Gauge Fields, Knots and Gravity Solutions

Fionn Fitzmaurice fionn.github.io/gfkg

I Electromagnetism
1.1 Maxwell’s Equations
1.2 Manifolds

1.3 Vector Fields
1.3.1 Tangent Vectors . . . . .. ... ... ... ... ......

1.3.2 Covariant Versus Contravariant . . . . . . . . . . . . .. ..
1.3.3 Flows and the Lie Bracket . . . . . .. .. ... ... ....

1.4 Differential Forms
141 1-Forms. . . . .. .. ... . .
[.4.2 Cotangent Vectors. . . . . . . .. ... ... ... ..
1.4.3 Change of Coordinates . . . . ... .. ... ... .. ....
144 p-Forms . ... ... . . .. ...
1.4.5 The Exterior Derivative . . . . . . . .. .. ... ... ...

1.5 Rewriting Maxwell’s Equations
1.5.1 The First Pair of Equations . . . . .. .. ... ... ....
1.5.2 The Metric . . . . . . . .. . .
1.5.3 The Volume Form . . . . . ... .. ... ... .. .. ....
1.5.4 The Hodge Star Operator . . ... ... ... .. ......
1.5.5 The Second Pair of Equations . . . .. .. .. .. ... ...

1.6 De Rham Theory in Electromagnetism
1.6.1 Closed and Exact 1-Forms . . .. ... ... .........
1.6.2 Stokes’ Theorem . . . . . . . . . .. .. ... ... ......
1.6.3 De Rham Cohomology . . .. ... .. .. .. .. ......
[.6.4 Gauge Freedom . . . ... ... ... ... ... ...
1.6.5 The Bohm—Aharonov Effect . . . ... ... ... ......
1.6.6 Wormholes . . . . . . .. . ... ... ..
1.6.7 Monopoles . . . . . . . . . . ...

II Gauge Fields

I1.1 Symmetry
II1.1 Lie Groups . . . . . . o v v v it
I1.1.2 Lie Algebras . . . . . . . ... ..

10
13

17
17
19
22
26
31

32
32
33
37
39
43

53
93
56
62
63
63
64
68

69


https://fionn.github.io/gfkg/

Part 1

Electromagnetism

I.1 Maxwell’s Equations

We are, as it were, on an unruffied sea, without stars, compass, sounding,
wind or tide, and we cannot tell in what direction we are going.

Exercise I.1. Let k be a vector in R? and let w = |k|. Fix E € C3 with
k-E =0 and ik x E = wE. Show that

E(t,&) = Be itk
satisfies the vacuum Maxwell equations.

Solution I.1. Recall that Maxwell’s equations are

_ . OB
B = E+ " =
v 0, V x + o 0,
. JFE
E = B-" =7
\Y, P, V x o =7

The vacuum equations are invariant under
B—E, E—-B
(electromagnetic duality, see §1.5.5) or, equivalently, for a complex-valued
vector field £ = E 4+ 1iB,
E k.
This lets us express the vacuum equations in terms of £ as

V-£=0, vx&=il
ot

For the divergence,



For the curl (dropping the summation and using Einstein notation),
(V x E(t, 7)), = €1j10;E(t, T)
= €10, (Eke—i(wt—iz.f))

_ EijkEkaje—i(wt—k‘f)

= Eijkik‘jEke_i(wt_g.f)
= (zE X Ee‘i(“t_'z'f))
_ wEie—i(wt—E.f)

= wé’i(t, f),

7

so0 V x £ = w€. But

0 = 0 (= _ilwt—T
—_ 2 — —i(wt—k-Z)
até’(t, z) 5 (Ee )

— _jwBe—iwt—k®)

= —iwé(t,T),
giving

V€ mwi=i%
ot

and satisfying the second vacuum equation.



I.2 Manifolds

Space and time cannot be defined in such a way that differences of the
spatial coordinates can be directly measured by the unit measuring-rod, or
differences in the time coordinate by a standard clock.

Exercise I.2. Show that a function f: R™ — R™ is continuous according to
the above definition if and only if it is continuous according to the epsilon—delta
definition: for all x € R™ and all € > 0, there exists § > 0 such that ||y — z|| < ¢

implies || f(y) — f(z)] <e.

Solution I.2. A function f: X — Y from one topological space to another
is defined to be continuous if, given any open set U C Y, the inverse image
f~YU) C X is open.

Suppose f is continuous according to the epsilon—delta definition of continuity.
Let V C R™ be an open set. For any z € f~1(V), since f(x) € V there exists
a ball of radius €, B(f(z),€) C V, centered at f(z). Then by the epsilon—delta
condition there exists a ball of radius 0, B(z,d) C R™ such that

f(B(z,9)) € B(f(),€).

Since z was arbitrary, f~!(V) is open as all points sufficiently close to = are
also in f~1(V).

Suppose f is continuous according to the topological definition of continuity.
Let z € R" and € > 0. Consider the open set f~1(B(f(z),e)) C R". There
exists a § > 0 such that

B(z,0) ¢ f7H(B(f(2),€)).

Therefore for any point y € B(z,6), f(y) € B(f(z),€) or, equivalently,
ly — x|l <6 implies || f(y) — f(z)] <e

Exercise 1.3. Given a topological space X and a subset S C X, define the
induced topology on S to be the topology in which the open sets are of the
form U NS, where U is open in X.

Let S™, the n-sphere, be the unit sphere in R?*!:
n+1 .9
Sn — {fe Rn+1 ‘ Z (1‘7') = 1}
i=1

Show that S™ C R™*! with its induced topology is a manifold.
Solution I.3. We need to show that:
« the open sets of the induced topology {U,} cover S™,

o there exists an atlas of charts o, : U, — R” for all «,



e the transition functions ¢, o @El : R®" — R” are smooth where defined
(since we include “smooth” in our definition of a manifold).

Consider the sets
Uy =5"\{(0,...,0,1)}, U_1=5"\{(0,...,0,—-1)}

which each exclude a single pole. Each U, is of the form U N S™ where U is
open in R"*1. The induced topology {U;,U_1} is a cover of S™.

Let ¢q : Uy — R™ be the stereographic projection (for « € {—1,1}). For
some p € S™, ¢, (p) € R™ should be a point on the line that intersects S™ at
5o = (0,...,0,a). Take a segment of this line parameterised by t € [0, 1] as

(1 —=t)8a +tp= (tp1,.. . tpn,a(l —t) + tppi1)
= (tpl, v tpn, o+ t(pn+1 — Oé))

1

This intersects R™ when the last coordinate a+t(p,+1 —a) =0,s0t = jE——

and the projection is therefore given by

“ 1- apn—f—l’ 11— APn+1

Each projection is a chart and the collection of these charts is an atlas, since
the union of their domains covers S™.

Denoting ¢q : pr To = (21,...,27), the I?-norm

(14 pns1)(I = pry1)
(1 - apn+1)2

1 —pny1/
ri—l
R FT
(0%

This gives us a general expression for the points g = (p1,...,pn) on the
manifold in terms of our chart’s coordinate system as

SO

Pn+1 =

Di = xlc‘x(l — app1)
_ 2z},
r2 +1’




so the inverse projections ¢, ! : R® — S™ are given by

1L 22! 22" r?—1
e I a o .
Yo r24+17 72417 241

For inverse map gpgl, note that the point p,41 is given by

2
re—1
Pn+1 = /87"2 +1 .
From this, and assuming «, 8 are distinct so a8 = —1, we get that

1 r?+1

1—app 22

The transition functions ¢, o (p,gl : R" — R™ (with distinct a, §) are then
given by

1o 22! 22" r?—1
#a 0 pp (T) = va r2+1""’7"2+1’5r2+1
(22t 241 22" r?41
S\l 202 7241 292
.z
=—.
]

These transition functions are inversions on the n-sphere and are smooth where
they are defined.

Exercise I.4. Show that if M is a manifold and U is an open subset of M,
then U with its induced topology is a manifold.

Solution I.4. All subsets U, C U are of the form V N U where V is open in
M, so the open sets of the induced topology cover U.

We can construct an atlas by taking the charts on M, ¢, : V, — R”, and
defining
oY U, - R",

tu o pq(u),

i.e. npg = g, for all U,. Since U, is open, we have well defined transition
functions so U with the induced topology is a manifold.

Exercise 1.5. Given topological spaces X and Y, we give X X Y the product
topology in which a set is open if and only if it is a union of sets of the form
U x V, where U is open in X and V is open in Y. Show that if M is an
m-~dimensional manifold and N is an n-dimensional manifold, M x N is an
(m + n)-dimensional manifold.



Solution I.5. For every point (u,v) € M x N, there exists a set U x V where
U is open in M and V is open in N such that u € U, v € V. Therefore U x V
is an open set under the product topology and M x N is a topological space.

Given M, N are manifolds, they have atlases

{d U > r™Y, Lol v >R
for all U, open in M, V3 open in N.
For some u € U,, v € Vg, denote

goyzur—)a_:':(xl,...,a:m), @]szvr—)g]:(yl,...,yn).

We can construct maps Qa5 : Uy X Vg — R™ x R" as
Bap(u,v) = (98 (w), 0} (v)
= (Z,9).
This is obviously invertible via
el = -1, -1,
Pap@ ) = (0@, (e§) @) = (w,0)

because the inverse charts are guaranteed to exist.

1

The product space R™ x R" is homeomorphic to R™™" under

h(f7g) = (xla' . 7xm7y17"'7yn)7

so we can construct new smooth maps a3 = h o @ap that target R™*". The
transition functions

Dap © 80;51 . R _y g
are similarly obviously smooth where defined, so @3 is a chart and the
collection of these charts for all U,, V3 is an atlas, therefore M x N is a

manifold.

Exercise 1.6. Given topological spaces X and Y, we give X UY the disjoint
union topology in which a set is open if and only if it is the union of an open
subset of X and an open subset of Y. Show that if M and N are n-dimensional
manifolds the disjoint union M U N is an n-dimensional manifold.

Solution 1.6. Any point p € M U N is either in M or N. Consider a neigh-
bourhood X of p. This will be of the form U UV for U, V open subsets of M,
N since p € X is equivalent to p € X U @.

Given M, N are manifolds, they have atlases
{gog/[ : Ua—HR”}, {cpg :V5—>R”}

for all U, open in M, Vg open in N. Therefore any neighbourhood of p € MUN
has a chart, for all p.

Since the transition functions exist independently, they are automatically
smooth. Therefore M U N is an n-dimensional manifold.



I.3 Vector Fields

Ignorant men have long been in advance of the learned about vectors.

Exercise 1.7. Show that v +w and gw € Vect(M).

Solution I.7. For the sum,

(v+w)(f+g)=v(f+g)+w(f+9)
=v(f) +v(g) + w(f) +w(g)
= (v+w)(f) + (v +w)(g),

(v +w)(af) =v(af) +wlaf)
= av(f) + aw(f)
= a(v(f) +w(f))
= a(v+w)(f),

(v +w)(fg) =v(fg) +w(fg)
=0 f)g+fv( ) +w(f)g+ fw(g)
= (v(f) +w(f)g+ [ (v(g) +w(g))
= (v+ )( )g+ [ (v+w)(g).

P

For the product,

gw(f+h)=g- (w(f) +w(h))
= gw(f) + gw(h),

gw(af) =g-oaw(f)
= agw(f),

gw(fh) =g- (w(f)h+ fuw(h))
= gw(f)h +gfw(h)
= gw(f)h+ fgw(h).
Exercise I.8. Show that the following rules [hold] for all v, w € Vect(M) and
f,g€ C®(M):
flo+w) = fo+ fu,
(f +9)v = fv+gv,
(fg)v = f(gv),

lv =w.

(Here “1” denotes the constant function equal to 1 on all of M.) Mathematically,
we summarize these rules by saying that Vect(M) is a module over C°°(M).

7



Solution I.8. For all g € C*°(M),

flo+w)g = fuo(g) + fw(g) = (fv+ fw)(g),
5o f(v+w) = fot fw.
For all h € C>*(M),
(f +9)v(h) = fo(h) + gv(h) = (fv + gv)(h),
so (f+g)v= fv+gv.
For all h € C>*(M),
(fg)v(h) = [ - gu(h) = f(gv)(h)

so (fg)v = f(gv).
For all f € C>(M),

(10)(f) = 1o(f) = v(f)-
Therefore Vect(M) is a module over C*°(M).

Exercise 1.9. Show that if v#0, = 0, that is, v"0,f = 0 for all f € C*(R"),
we must have v* = 0 for all p.

Solution 1.9. Choose a function f : & — x* for some index 0 < v < n. Then
v'Oux” = vhoy ="

If v#9,, = 0, we get v* = 0 from above.

I.3.1 Tangent Vectors

Exercise 1.10. Let v, w € Vect(M). Show that v = w if and only if v, = w,
for all p e M.

Solution I.10. If v = w, then

S0 Up = Wp.

The other way around, if v,(f) = wy(f) then v(f)(p) = w(f)(p), which must
be true for all p € M, so v(f) = w(f) and therefore v = w.



Exercise I.11. Show that T),M is a vector space over the real numbers.

Solution I.11. We must show that tangent vectors v, € T, M satisfy the
axioms of vector spaces.

Let u,v,w € T,M and o, 3 € R.

To check associativity,

(u+ (v+w))(f) =

sou+ (v+w)=(u+v)+w.
Commutativity holds since R is commutative.
An additive identity vector 0 exists since
(v+0)(f) = v(f) + 0(f) = v(f)
by defining 0 to be the tangent vector that maps all functions to 0.

We can construct for every tangent vector v an additive inverse —v as (—v)(f) =
—u(f)-

We have compatibility of scalar and field multiplication since
a(Bv)(f) = a(Bu(f)) = aBu(f) = (aB)v(f).

The existence of a scalar multiplicative identity follows from solution L.8.

For distributivity,
a(u+v)(f) = a(ulf) +v(f)) = au(f) + av(f)

and

(a+ B)u(f) = av(f) + Bu(f).

Exercise I.12. Check that +'(t) € T.,;) M using the definitions.
Solution 1.12. We have that

Y1) e 1),

Notice that

so 7/(t) is a tangent vector.



1.3.2 Covariant Versus Contravariant
Exercise 1.13. Let ¢ : R — R be given by ¢(t) = e!. Let = be the usual
coordinate function on R. Show that ¢*x = e”.

Solution I.13. The pullback ¢* : C*(N) — C®(M) of f : N — R by
¢: M — N is defined as
O f = fodo. (pullback of a function)

Consider a chart ¢ : M — R™ mapping p € M to ¢(p) = {z"(p)}. Note that
each z* is a function taking p to the pt* coordinate of its image in R”.

Since our manifold is R, the “usual coordinate function” in this case is the
identity (under trivial coordinate transformation t — z, say), so

(¢*2)(t) = x(o(t)) = (") = e

(where we abuse notation and identify the coordinate transformation function
and its target as ).

Exercise 1.14. Let ¢ : R? — R? be [a] rotation counterclockwise by an angle
6. Let z, y be the usual coordinate functions on R?. Show that

¢*x = cos(f)x — sin(h)y,
¢*y = sin(f)x + cos(0)y.

Solution I.14. If ¢ is a positive rotation by a (fixed) angle 8, we can express

it as
fu cos(d) —sin(0)\ [ u)  (cos(f)u —sin(f)v
¢ <v> ~ (sin(@) COS(9)> (v) N (Sin(ﬁ)u+cos(0)v>'
As before, consider the chart ¢(p) = {z#(p)} = {z(p),y(p)}. Then ¢*z(p) =
z(¢(p)) is the z-coordinate, so for p = (u,v),

and similarly for ¢*y.

Exercise 1.15. Show that this definition of smoothness is consistent with
the previous definitions of smooth functions f : M — R and smooth curves
v:R— M.

Solution I.15. Recall the definition of smooth functions between manifolds.

¢ : M — N is smooth if f € C*°(N) implies that ¢*f € C°(M).

10



Our other two definitions of smoothness are:
e a function f: M — R is smooth if for all a, f o ;! : R™ — R is smooth,

e acurve v : R — M is smooth if f(y(t)) depends smoothly on ¢ for any
feC>(M).

If N = R, our definition of smooth functions between manifolds is that
¢ : M — R is smooth if f € C*°(R) implies that ¢*f € C*°(M). But if we
assume f € C°(R) then ¢*f = fo¢ € C°°(M) requires that ¢ € C*°(M) and
¢ : M — R is smooth if for all o, ¢ o ;! : R® — R is smooth.

Let ¢ : M — R be a smooth function (i.e. for all o, ¢ o p ! : R® — R). Let
f € C®(R). Then f o ¢op,! is smooth since it is the composition of smooth
functions, so f o ¢ = ¢* f is smooth.

If the domain is R, our definition of smooth functions between manifolds is
that v : R — M is smooth if f € C°°(M) implies that v*f € C*°(R). But if
we assume f € C°(M) then v*f = f o~y € C*°(R) is smooth by the definition
of smooth curves.

Let v : R — M be smooth, i.e. f o+ is smooth for all f € C°°(M). Since
v¥*f = fo~,v*f is smooth too.

Exercise 1.16. Prove that (¢ 07)'(t) = ¢« (7' (¢)).

Solution I.16. The pushforward ¢, : T, M — Ty, N of v € T,M by ¢ : M —
N is given by
(0s0)(f) =v(6*f).  (pushforward of a vector)

Then p
(@) (O(f) = 2 f($27)(®))

= L(resom)

- i(f 0 6)(+(1))

Y (t)(f o)
’(t)( “f)
= (¢:(Y (O))(f)-

Exercise 1.17. Show that the pushforward operation
Oy - TpM — T¢(p)N

is linear.

11



Solution I.17. Let v,w € T,M, o, € R, f € C®(N). ¢, is linear since

(¢«(av + Bw)) (f) = (av + Bw)(¢" f)
= av(¢*f) + Bw(e*f)
= a(g«v)(f) + B(dw)(f)
= (a(pwv) + B(dew))(f)-

Exercise 1.18. Show that if ¢ : M — N is a diffeomorphism, we can push
forward a vector field v on M to obtain a vector field ¢,v on N satisfying

(¢+v), = d«(vp)
whenever ¢(p) = q.

Solution I.18. Note that the definition of the pushforward is sloppy, since
the left side must be evaluated on N while the right side is evaluated on M.

Looking at the action of ¢,v on a function f € C°°(N) and denoting the points
that each side act onaspe M, g€ N,

(90),(f) = (¢40)(f)(q)
=v(¢"f)(p)
= vp(¢"f)
= (¢xvp) (f)-

But
up(¢™f) = vp(f 0 9)
=v(f(o(p)))
= we(p) (f)

for some w € Vect(N).

It’s tempting to write this as vy, (f), but v € Vect(M) whereas ¢(p) € N.
Instead we need exactly the pushforward of v, so we get wg(,) = (psv) $(p) and
the equality holds when ¢(p) = q.

Exercise 1.19. Let ¢ : R? — R? be [a] rotation counterclockwise by an angle
0. Let 0., 0y be the coordinate vector fields on R2. Show that at any point of
R?,

50y = c0s(0)0, + sin(6)0y,

40y = —sin(0)0, + cos(6)0,,.

Solution I.19. Denote ¢ : (z,y) — (u(z,y),v(x,y)) where u,v are functions
as per solution 1.14 and let f € C°°(R?).

12



For a vector 0;, the pushforward acting on f is

(6:0:)(f) = 0i(¢" f)
= 0i(fo9)

and at a point p = (,y) € R?,

(@ﬁi)p(f) = Ou - Oy f(u,v) + Ojv - Oy f(u,v).

We want to consider f at p rather than at ¢(p), so change variables as

Ouf(u,v) = 0u f(2,y), Opf(u,v) = 0y f(x,y).
Consider ¢.0, and ¢.0,,

(¢*ax)p(f) = 0,u - &rf(x’ y) + 0, - 8yf(xa y)

= cos(0)0, f (x,y) + sin(0)9, f(z, y),
(¢*8y)p(f) = Opu- Op f(x,y) + Oyv - 8yf(xv Y)

= —sin(0)0: f(x,y) + cos(0)0y f(z,y),

giving us
$50, = c0s(0)0, + sin(6)0y,
40y = —sin(0)0, + cos(6)0,,.

We can see that this is consistent by taking the result from solution 1.14,
(¢px0y)x = 0z(p"x) = cos(h), (¢x02)y = Ox(¢™y) = sin(0),
(¢0y)z = Oy(¢*x) = —sin(0), (¢:0y)y = 0y (¢™y) = cos(0),

where we get back the z- and y-components of ¢.0,, ¢.0,, respectively.

1.3.3 Flows and the Lie Bracket

Exercise 1.20. Let v be the vector field 220, + y0, on R2. Calculate the
integral curves v(t) and see which ones are defined for all ¢.

Solution I.20. Integral curves satisfy v'(t) = v, (), 7(0) = p.
Denote y(t) = (z(t),y(t)) € R% Then from the definition of tangent curves,

if(v(t)) = %f(x,y)

dt
= 0o f(2,y)@ + 0y f(x, )y

!

= 2°0,f (2, y) + y0, f(z,y)

13



giving us differential equations i(t) = x(t)%, §(t) = y(t) with solutions
1
t)=—— t) = Be’.
)= =5

Fix the constants «, 8 with initial condition v(0) = p = (2(0),y(0)). Then

0
2(t) = &7
1—z(0)t

When z(0) = 0 we get z(t) = 0 for all ¢t. Otherwise, we get a singularity at
t= ﬁ, so the integral curves 7 are defined for all ¢ when starting at p = (0,0)
for any b € R.

Exercise I.21. Show that ¢g is the identity map id : X — X and that for all
s,t € R we have ¢y 0 ps = Py4s.

Solution I.21. By definition, the flow ¢¢(p) is defined to be the point on the
integral curve a parameter distance ¢ from p, therefore at t = 0, ¢o(p) = p.

Pick some value t = tp and label the point ¢4, (p) = ¢. Let t1 = to + s, so
&1, (D) = ¢to+s(p). But this is a parameter distance s from g, so ¢, (p) = ¢s(q)
and thus

Pto+s(p) = ¢s © bty (P)-
It follows from this that ¢! = ¢_g, so the flow is an Abelian group.

Exercise 1.22. Consider the normalised vector fields in the r and 6 directions
on the plane in polar coordinates (not defined at the origin):

w0 + Y0y 20y — YOy

= , w=—FA—r
/.%'2 + yQ /[E2 + y2
Calculate [v, w].
Solution 1.22. Since z = rcos(d), y = rsin(d), we have for some f € C>°(R?),

Orf = cos(8)0y f + sin(6)0, f,
Ogf = —rsin(6)0, f + rcos(0)0, f

sov:(‘)r,w:%.Then

[v, wlf = v(w(f)) = w(v(f))

= v(%) —w(0-f)
=o.(2h) - %)
_10:0pf —0of OO f

- 2

r r

= (000 -2~ 200,1)

r

14



w

so [v,w] = —*%.

We could also do this the hard way,

[v,w]f =v(w(f)) —w(v(f))
_ (@0x +y0y) @0y f — yOu f) — (20y — y0u) (202 f + Y0y f)
T2 + 92
205(20y f) — 202 (y0z f) + yOy(x0y f) — yOy(yOu f)
B $ay(x8xf) B xay(yayf) + yax(maxf) + yax(yayf)

N z? +y?
_ yduf —20,]
z2 +y?
giving the same result
[v,w] = Yo — 20, - v
22 + y? r

Exercise 1.23. Check the equation above.

Solution I.23. We need to check that for any f € C*°(M),

82
[0, wl(F)(p) = 5752 (Fs(6ep)) — F(Gu(:(p))))

s=t=0
where ¢;, ¥ are flows generated by v and w, respectively.

We have that

)

s=0

@H) = ST . wnm) = L)

)
t=0

SO

() ()(p) = S (&n(p)]

2

Ot 0s

t=0

F(s(00(p)]

s=t=0
and similarly

(W) (F)(p) = 0] (4(p)

82
~ 950t

’5:0

f(0e(s(p)))

t:s:(J.

The result follows immediately.

15



Exercise 1.24. Show that for all vector fields u, v, w on a manifold, and all
real numbers «, 3, we have:

R -
2. [u, v + pw] = afu, v] + plu, w],

3. the Jacobi identity: [u, [v,w]] + [v, [w, u]] + [w, [u,v]] = 0.
Solution 1.24.

1. The Lie bracket is antisymmetric.

[v,w] = vw — wv = —(wWv — Vw) = —[w, v].

2. The Lie bracket is linear.

[u, av + pw] = u(av + Pfw) — (av + Pfw)u
= auv + fuw — avu — fwu
= a(uv — vu) + Buw — wu)
= afu,v] + Blu, w].

3. The Lie bracket satisfies the Jacobi identity.

[u, [v, w]] = ufv,w] — [v, w]u
= u(vw — wv) — (vw — wv)u

= UVW — YWV — VWU + wou,
so similarly,

[v, [w, u]] = vwu — vuw — wuv + uwv,

[w, [u,v]] = wuww — wou — vvw + Vuw.
Combining everything, we get

[w, [v, w]] + [v, [w,u]] + [w, [u,v]] = vvw — VWV — Vwu + wou
+ vwu — vuw — wuv + uwv
+ wuv — wvu — uvw + vuw

=0.
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I.4 Differential Forms

As a herald it’s my duty
to explain those forms of beauty.

1.4.1 1-Forms

Exercise 1.25. Show that w + p and fw are really 1-forms, i.e., show linearity
over C*°(M).

Solution I.25. Let g,h € C*°(M), v,w € Vect(M).
w +  is linear over C*°(M) since
(w+ p)(gv + hw) = (w + p)(gv) + (W + p) (hw)
= w(gv) + pu(gv) + w(hw) + p(hw)
= gw(v) + gu(v) + hw(w) + hy(w)
= g(w + p)(v) + h(w + p)(w)

and fw is linear over C°°(M) since

(fw)(gv + hw) = fw(gv + hw)
= fgw(v) + fhw(w)
= gfw(v) + hfw(w)
= g(fw)(v) + h(fw)(w).

Exercise 1.26. Show that Q!(M) is a module over C*° (M) (see the definition
in exercise 1.8).

Solution 1.26. Let w,u € QY(M), v € Vect(M).
For all f € C>*(M),
flw+p)() = flwv+ pv) = fwv+ fuo

so flw+p) = fuw+ fu
For all f,g € C*(M),

(f + gw(v) = fw(v) + gw(v)

so (f+ 9w = fw+ gw.
For all f,g € C*°(M),

(fgw(v) = fgw)(v) = (fgw)(v)
o (fg)w = fow.

17



Let 1 be the constant function equal to 1 on all of M. Then

(1w)(v) = lw(v) = w(v).

Therefore Q!(M) is a module over C*°(M).
Exercise I.27. Show that
d(f +g) = df + dg,
d(of) = adf,
(f+9)dh = fdh+ gdh,
d(fg) = fdg+gdf
for any f,g,h € C>°(M) and any a € R.
Solution I.27. Let v € Vect(M). First consider linearity.
d(f +g)v=v(f +9)
=vf+ug

= df (v) + dg(v)
= (df + dg)(v),

d(af)(v) = v(af) = av(f) = adf(v),
(f +9) dh(v) = (f + g)v(h)

— fo(h) + gu(h)
= fdh(v) + gdh(v).

The Leibniz law holds since

d(fg)(v) =v(fg)
= fo(g) + gv(f)
= fdg(v) + gdf (v).

Exercise 1.28. Suppose f(x!,... 2") is a function on R™. Show that

df = 0y f dzt.
Solution I.28. Recall from solution 1.9 that {J,} forms a basis for R", so
v = v*0, for some components {v/}, v € Vect(R"). Consider some test vector

v,

df(U) = U(f) = U“@Hf.
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On the other hand,

Ouf dat(v) = Opfo(at)
=070, fO,x"
=" uf(sg
=010, f,
giving df (v) = 0, f dz*(v) and therefore df = 0, f dz.
Exercise 1.29. Show that the 1-forms {dxz*} are linearly independent, i.e., if

w=wydxt =0

then all the functions w,, are zero.
Solution I.29. As in solution 1.28, consider some vector field v.
w(v) = wudat(v)
= wyv(zh)
= v"w, 6l

Y
—ku

so w(v) = 0 implies v#w, = 0. But since v is arbitrary, w,, = 0 for all p.

I.4.2 Cotangent Vectors

Exercise 1.30. For the mathematically inclined: show that the w, is really
well-defined by the formula above. That is, show that w(v)(p) really depends
only on v, not on the values of v at other points. Also, show that a 1-form is
determined by its values at points. In other words, if w, v are two 1-forms on
M with w, = v}, for every point p € M, then w = v.

Solution I.30. Let u,w € Vect(M) with u # w. Let u, = w,, with u, # w,
necessarily, ¢ € M, q # p. Consider the vector field v = v — w. Then to show
that w,, is well-defined, it is sufficient to show that for any w = df,

wp(vp) = w(v)(p)
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Just as in solution 1.10, if w, = v, for every point p € M then wy(vy) = vp(vp)
for some v, € T, M. But

for all p € M and therefore, since v is arbitrary, w = v.

Exercise 1.31. Show that the dual of the identity map on a vector space V
is the identity map on V*. Suppose that we have linear maps f: V — W and
g: W — X. Show that (gf)* = f*g*.

Solution I.31. The dual of a linear map f : V — W is defined by
(fw)(v) = w(f(v))

where f*: W* — V*.

Let id : V' — V be the identity map on V. For some v € V,

(id(v))

(v)

giving id*w = w, therefore id* : V* — V* is the identity map in the dual space.

(id*w)(v)

w
w

For the composition gf = g o f, recall the definition of the pullback of a
function. Let h : X — Y and consider the pullback

(gof)*h=ho(gof)
=hogof
=(hog)of
=(g*h)o f
= f*g9"h,

giving (g9f)" = f*g*.

We can also pretend that we don’t know this is a pullback and use only the
definition of the dual space above, by saying

((ge f)w)(v) =w((ge f)v))
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Exercise 1.32. Show that the pullback of 1-forms defined by the formula
above really exists and is unique.

Solution 1.32. Let ¢ : M — N, p+— ¢(p) = q. Then for v € T,)M, w € T/ N,
the pullback ¢* : Ty N — T7M of w by ¢ is defined as

(9" w)(v) = w(Psv) (pullback of a 1-form)

and globally we get (¢*w), = ¢*(wq)-

To see this, take a test vector v € T, M and, similar to solution 1.18,

(¢"w),vp = (¢"w)(v)(p)
= w(¢v)(q)
= wq(¢xvy)
= ¢"(wq)vg-

Let ¢*v € TyM be some 1-form where (¢*w), = (¢*v),. It follows from
solution 1.30 that w = v.

Exercise 1.33. Let ¢ : R — R be given by ¢(t) = sin(¢). Let dz be the usual
1-form on R. Show that ¢*dx = cos(t) dt.

Solution I.33. Using the fact that the exterior derivative is natural, i.e.
¢*(df) = d(¢* f), for some vector v = f(t)0;

Exercise 1.34. Let ¢ : R?> — R? denote rotation counterclockwise by the
angle 0. Let dx, dy be the usual basis of 1-forms on R2. Show that

¢*dx = cos(0) dz — sin(6) dy,
¢ dy = sin(0) dx + cos(0) dy.
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Solution 1.34. Let v = fi(x,y)0; be some vector in Vect(R?) and p = (z,y) €
R2. For ¢ as in solutions 1.14, 1.19,

(¢"dx),v = d(¢"z)(v)(p)

= d(z 0 ¢)(v)(p)

= v(cos(0)z — sin(f)y)
= fi(z,y)0z(cos(0)z — sin(h)y)

+ fa(x, )9y (cos(@)x — sin(0)y)

= fi(x,y) cos(0) — fa(z,y)sin(0
= cos(0) f1(x,y) 0z — sin(0) f2(z,y)0y
= cos(f)v(x) — sin(0)v(y)
= cos(#) dz(v) — sin(0) dy(v)

and similarly for ¢*dy.

I.4.3 Change of Coordinates

The introduction of numbers as coordinates [...] is an act of violence. ..

Exercise I.35. Show that the coordinate 1-forms dz* really are the differentials
of the local coordinates «* on U.

Solution 1.35. The statement requires us to be “working in the chart”, so for
now we’ll be explicit and denote the local coordinates on U as ¢*z#. Then the
exterior derivative is

d(p*zt) = e dat.

To show that this really forms a basis of coordinate 1-forms, consider the basis
vectors “in the chart”, ¢;19,,.

d(g*a") (931 0,) = 0D, (0" at)
=0,((p*a") o p7")
= gn.

Exercise 1.36. In the situation above, show that

v
dz"’ = %dw“.

Show that for any 1-form w on R", writing
w = wydat = w, dz’”,
your components wj, are related to my components w,, by

ozt

/ j—
Wy = oW
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Solution I.36. Since 1-forms form a basis, we can write
dz"V = T, dz"
for some linear transformation 7};. Acting on 9y, we get

dz" 9, = TYdax 0,
= T{ 5,
— T,
but
dz" 8, = 02"

83:0‘ /v
= axﬂ 8}\1'
8.%’,)\ ,
~ Ok %
a;v/l/

oxH
so the transformation rule for coordinate 1-forms is

v
dz'’ = gﬂvudaz“.
iy

We can use this to write any 1-form w on R” in a different basis, as

oxH

v
=w dz'”.
I ox'v

— w
w = wydr

In this coordinate system, we identify the components of w as

’
,  Oxt

W, = W(A]u.

Exercise 1.37. Show that

am/l/

_ p
= 2an dzt.

¢*(dz")

Solution I.37. Consider the action on the coordinate vector field 0y,
¢*(dx™)0x = d(¢"x")Ox
— 8)\((15*16,’/)

8 v

= % (“get used to it”)
awll/

_ i

~ OxH %)
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We could instead use the result from exercise 1.35, again acting on the coordi-
nate vector field 9,

ax/lj
OxH

da’(¢+0y)

B 8:1;/1/
~ OxH
8:1;,/1/

OxH

dx“) oy

d:r“@,\

where we are sloppy about the pullback in the last line, as is the convention.

Exercise 1.38. Let
ep =T, 0,

where 0, are the coordinate vector fields associated to local coordinates on an
open set U, and T}; are functions on U. Show that the vector fields e, are a
basis of vector fields on U if and only if for each p € U the matrix T)/(p) is
invertible.

Solution I.38. For {e,} to form a basis, they must be linearly independent
and span U.

Suppose T is invertible at p. Then acting on both sides by S = 7! gives us
Spex = SaTX0,
= 0,0,
= 0,.
Any vector u € U can therefore be expressed as
u=u"d, = u”Sﬁ\e}\ =u'te,
so {e,} forms a basis for U.

Assume {e, } forms a basis for U. Then for some smooth functions S}, on U,
Oy = S’Ze,,
A
= ST, 0x.
We must identify SZTV)‘ = (52‘, so T is invertible.

Exercise 1.39. Use the previous exercise to show that the dual basis exists
and is unique.

Solution I.39. If {e,} is a basis of vector fields on U, we automatically get a
dual basis of 1-forms {f#} satisfying

fHey) = oy
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We can express
B Gl
fH=50dx

for some smooth functions S¥ on U. Then
f*(ev) = Stda"(T;)05)
= SHTAdz" )
= SET,
= SiT)
so the dual basis exists, since T' is invertible (from exercise 1.38).

Suppose there exists 1-forms {g"} also satisfying g#(e,) = 0¥. Then for some
smooth functions S on U, g* = Sida” and, eventually, SY'T)) = 5%. But the
inverse of T is unique, so S’ = S and therefore gt = fH.

Exercise 1.40. Let e, be a basis of vector fields on U and let f# be the dual
basis of 1-forms. Let
I
€, = T: e,
be another basis of vector fields and let f* be the corresponding basis of
1-forms. Show that

=@
Show that if v = v'e, = v'e],, then

Wi = (T 1Y
and that if w = w,, f* = w), f™*, then

A

“h

Tﬁwy.
Solution 1.40. We know that f'* = S¥ f¥ for some functions S¥ on U. Then
f(e,) = fM(T)en)
= SEfT ey
= Sngj\fﬁe)\
= SHTAS®A
A
= S{Ty.
But f(e!) = 6" from the definition of the dual basis, so S = T~!.
If v = vle, = v'te),, then ve, = v Ve, and equating coefficients gets us
v” = T¢v"™. Applying S =T,
SHy? = SETVyA
— ¢ A

= ’Ulu’
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so the components of a vector are contravariant.
If w=wy,f'=w,f*, then w, f" = w) S f¥ and equating coefficients gets us
wy, = Sowh. Applying T,
T w, =T, SAuwh
A
= 6Mw’A

_ /
_wu

so the components of a 1-form are covariant.

1.4.4 p-Forms

Exercise 1.41. Show that

Uy Uy Uy
uAvAw=det| v, vy, v, |dvAdyAdz.
Wy Wy W

Compare this to @ - (¥ x o).
Solution I.41. Let u, v, w be vectors,

U = Updx + uydy + u.dz,
v = vpdx + vydy + v.dz,
W = Wedr + wydy + w,dz.

Then
VAW = (Vpwy — vywy) dz A dy

+ (vyw, — v wy) dy A dz
+ (vywy — VW) dz A dx,

so the triple product
uNv AW = uz(vyw, — vwy) de Ady A dz
+ uy (v Wy — VW) dy A dz A dx
+ u (vpwy — vywg) dz Adx A dy
= Uy (VyWw, — vV wy) dx Ady N dz
— Uy (Vaw, — v wy) dr ANdy N dz
+ u; (vpwy — vywy) dx A dy A dz
Up Uy Uy
= det| v, vy, v, |dxAdyANdz.
Wy Wy W,
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Consider the traditional vectors i, ¥/, on R3.
U x W = (vyw, — vwy)V — (V2Wg — VW) ]+ (Vawy — vywm)g,
so the triple product
- (U X W) = ug (Vywsy — vWy) — Uy (Vaw; — VW) + Uz (Vpwy — Vywy),
the single component of u A v A w.

Exercise 1.42. Show that if a, b, ¢, d are four vectors in a 3-dimensional space
then a AbAcAd=0.

Solution 1.42. Using dz, dy, dz as a basis, we have from exercise 1.41 that

by by b,
bANcANd=adrNdyNdz, a=det|c, ¢, c.
d, dy d,

Then

aNbANcANd=aNadx NdyANdz

(azdx + aydy + a,dz) N acdx A dy N dz
aaydr ANdx A\dy N dz

+ aay dy Ndx Ady N dz

+ aaydz Ndx ANdy N dz

=0

since w A w = 0 by antisymmetry and each term contains one repeated basis
element.

Exercise 1.43. Describe AV if V is 1-dimensional, 2-dimensional, or 4-
dimensional.

Solution I.43. Let u,v € V over a field F.
If dim(V) =1,
u = uzdr, v=uv,dx

so u A v = 0 by antisymmetry. Therefore AV consists of F and all linear
combinations of dx (i.e. V).

If dim(V) = 2,
U = Uzpdx + uydy, v = vzdr+ vydy

S0
UA V= uzpvy dx A dy + uyv, dy A do
= (Uuzvy — uyvy) dz A dy.

Therefore AV consists of F, V and all linear combinations of the 2-forms
dx A dy above.
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If dim(V') = 4 with basis {dt, dz, dy,dz}, AV will consist of F, V" and all linear
combinations of
dt Ndx, dtANdy, dtNdz, dxANdy, dxAdz, dyAdz,
dt Nde Ndy, dtANdxANdz, ditNdyANdz, dxANdyAdz,
dt Ndx ANdy N dz.

Exercise I.44. Let V be an n-dimensional vector space. Show that APV is
empty for p > n and that for 0 < p < n the dimension of APV is ﬁip)!.
Solution I.44. Let {e1,...,e,} be a basis for V. The subspace APV consists
of all linear combinations of the form e;; A---Ae;,.

A"V has the single basis element e; A --- A e,. The exterior product of any
element of A"V with any v € V is necessarily zero since we have exhausted
our supply of linearly independent vectors e; € V. Therefore APV is empty for
p > n.

The dimension of APV is the number of subsets of size p we can form from the
set of n basis vectors of V, so

dim(APV) = <”) __n

p)  pln—pl

This correctly reproduces edge cases such as dim(A°V) = () = 1 (for a vector
space V (F), this is the underlying field F) and dim(A"*1V) = 0.

Exercise 1.45. Show that AV is the direct sum of the subspaces APV
AV = P APV,
and that the dimension of AV is 2" if V is n-dimensional.

Solution 1.45. APV is the subspace of AV consisting of linear combinations
of p-fold products of vectors in V.

For any ¢ # p, the elements of AV and APV are linearly independent. Therefore
for any w € AV, w = wo + - - - + w,, where each w, € APV, so

AV =AVa - -pA"V
= @ APV,
p=0
The dimension of AV is therefore

dim(AV) = z": dim(APV)
p=0

-%0)

="
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by the binomial theorem.

Exercise 1.46. Given a vector space V', show that AV is a graded commutative
or supercommutative algebra, that is, if w € APV and p € A2V then

wAp==)"puNAw.
Show that for any manifold M, Q(M) is graded commutative.
Solution 1.46. Let w =wi A---Awp and = g A--- A pig. Then
WAp=wi A Nwp Apir A=+ N iy
= (=P Awr A - Awp Apa A+ A pig
(“1)Pps Apg AWy A= Awp Az A+ A g

(“DPI iy N Apg Awr A=+ Awp
=(-1)"pAw.

The above result holds analogously for any w € QP(M) and p € Q4(M). Since
QM) = Qr(M), Q(M) is graded commutative over any manifold M.

Exercise 1.47. Show that differential forms are contravariant. That is, show
that if ¢ : M — N is a map from the manifold M to the manifold N, there is
a unique pullback map

¢"  QN) = Q(M)

agreeing with the usual pullback on O-forms (functions) and 1-forms and
satisfying
¢ (aw) = ag'ew
6 wtp) = 6wt 6T
P(wAp) =g wAd
for all w, p € Q(N) and o € R.

Solution 1.47. Since any p € Q(N) can be expressed as @ = g + -+ + pin,
where each p, € QP(N), we can construct a pullback ¢* satisfying

¢ =@ (o + -+ pn)
= ¢ o+ -+ ¢ in
by linearity and only consider how ¢* acts on each p-form.

The pullback of a p-form w = wy A --- Aw, € QP(N) should generalise the
pullback of a 1-form. So on a collection of vectors vy, ...,v, € Vect(M) we
would like to get

(p*w)(v1,...,vp) = w(Psv1, ..., PxVp)
=wWr A /\Wp(¢*’l)17 .- '7¢*Up)
= ¢ wi A AP wp(vr,...,vp).
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which holds since each w; acts on ¢,v; independently. Then in terms of com-
ponents,

d*w = ¢*(%,wih,_,¢p ETA A eip)
= 6L, iy 8 (€A A E)

= g%d)*wih---,ip@ﬁ*eil A A ¢*€ip~

Let w,u € QP(N). Then

¢* (aw)(v1, ..., vp) = aw(Psv1, . . ., PxUp)

= ap w(vi,...,vp)
50 ¢*(aw) = ad*w,

O (w+ p)(vi,. .., 0p) = (W + p)(Pxv1, . . ., P5Vp)
= W(PsV1, - - - OuVp) + (P15 - - -, i)
= ¢ w(v1,...,vp) + ¢ u(vr, ..., vp)
= () on, - 0p)

50 ¢ (w + p) = ¢*w + " p,

¢*(w /\M)(’Ula e 71}[’) = (w A M)(d)*vh . '7¢*UP)
= ¢ 'wA ¢ (v, ..., vp)

50 ¢ (w A ) = ¢"w A " p.

Exercise 1.48. Compare how 1-forms and 2-forms on R? transform under
parity. That is, let P : R? — R? be the map

P(‘Taya Z) = (—IL’, —y,—Z),

known as the “parity transformation”. Note that P maps right-handed bases to
left-handed bases and vice versa. Compute ¢*(w) when w is the 1-form w,dz*
and when it is the 2-form %wwdm‘“ A dxV.

Solution 1.48. Assume ¢* is the pullback by P. Consider the pullback of dx*
acting on the coordinate vector field 0,,

(¢*dz")0, = d(¢*z")0,
= Oy (¢ z")
= 0y(at 0 ¢)
— o
= —0yat

= —dz"0,,
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so ¢*dxt = —dxt.

If w € Q'(R3), then
¢'w = " (wydat) = —w

and if w € Q?(R?), then

o*w = ¢* (%wwj dz? A d:z”)
= Lwy ¢ (da" A dz")
= %ww o dxt N p*dx”
= twu(—dz") A (—dz)

= Ww.

1.4.5 The Exterior Derivative

Exercise 1.49. Show that on R” the exterior derivative of any 1-form is given
by
d(wpdz!) = Oyw, dz¥ A dzt.

Solution 1.49. Since w,, is a 0-form,

d(wpdz!) = d(wy, A dxt')
= dwy N da" 4wy A d(dzt)
= dw,, N dz"

= Oywy dx” N dat.
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I.5 Rewriting Maxwell’s Equations

Hence space of itself, and time of itself, will sink into mere shadows, and
only a union of the two shall survive.

1.5.1 The First Pair of Equations

Exercise 1.50. Show that any 2-form F on R x .S can be uniquely expressed
as B + E A dt in such a way that for any local coordinates z* on S we have
E = E;dx* and B = %Bijdxi A dal .

Solution I.50. Since R x S is a manifold, we have an atlas {¢,} for all open
sets U, giving local coordinates z# = ¢, (u), u € U,.
Notice that {dz® A dt,dz® A da?} spans Q*(Uy). If F € Q?(U,), we can express
it as
F= 1F dzt A dx”
= 5 wax” A ax
1 . . . ,
=5 (Foidt A da' + Fioda' A dt + Fyyda' A da)
1 , , .
=3 (2Fioda’ A dt + Fijda' A da?)
1 . , .
= §Fijd$l Adr? + Fydx A dt
where Fy; = —Fjo by antisymmetry. Comparing coefficients, we get
F=B+FEANdt

where Fj; = B;; and Fyy = E;. Uniqueness is automatic since each component
is determined by its basis 2-form.

Exercise I.51. Show that for any form w on R x § there is a unique way to
write dw = dt A Oww + dgw such that for any local coordinates x* on S, writing
t = 20, we have

dgw = dwy dat A dl‘I,

dt A Oyw = Bpwy da® A dz’.

Solution I.51. Similarly to solution 1.50, since w € Q(U,) we have that
w = wrdz!, so

dw = Oywr dzt A dx!
= Oowr dz’ A dz! + dwr dat A dx!
= da® A Bpwy A dx! + By dat A dat
= da® A dyw + Oiwr dz® A da!
=dt N Ow + dgw.
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Again, this is guaranteed to be unique by linearity.

1.5.2 The Metric

Exercise 1.52. Use the non-degeneracy of the metric to show that the map
from V to V* given by
v = g(”? )

is an isomorphism, that is, one-to-one and onto.
Solution 1.52. Let v,w € V. By bilinearity,

g(”? ) - g(wa ) = g(U - w, )
so g(v,+) — g(w, ) = 0 implies v — w = 0 by non-degeneracy or, equivalently,
g(v,-) = g(w,-) implies v = w. Therefore the map is injective.

Since the map is injective and, from solution 1.28, dim(V') = dim(V™*), pick a
basis {e,} for V and we get a corresponding basis { f#} for V*.

We claim that we can express any w € V* as w = g(v, -) for some v € V.

= g(vueﬂv el/)g(elM )
= ng(euv 61,)9(61,, )
Because ¢ is non-degenerate, the above is solvable for v# and therefore the

map is surjective.

Exercise 1.53. Let v = v¥'¢, be a vector field on a chart. Show that the
corresponding 1-form g(v,-) is equal to v, f¥, where f* is the dual basis of
1-forms and

vy = gt

Solution I.53. We'll use the same argument as in solution 1.52. Denote
w = g(v,-), but since w is a 1-form we can express it in components as
w=w,f’

= w(ey)f”

=g(v,en) "

=g(W'eu, ) f”

= vtg(enen) f*

= ng;wfy

= gV f¥

:quy
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where we identify g, v* = v,.

Exercise 1.54. Let w = w,, f* be a 1-form on a chart. Show that the corre-
sponding vector field is equal to w”e,, where

w” = g"w,.
Solution I.54. Recall that the metric g is symmetric, so g, = g(ey, e) =

g(ey,eu) = guyu. From exercise 1.53 we have that for a vector field w”e,, the
corresponding 1-form is

w = Wuf'u = guuwl}fﬂ-
Applying the inverse g"” to the components w, = g, w",

174 _ v v
g" Wy = g" uvW

=uw".

Exercise 1.55. Let 1 be the Minkowski metric on R?* as defined above. Show
that its components in the standard basis are

N =

o O o
o O = O
O = OO
— o O O

Solution 1.55. For v, w € Vect(R?*), the Minkowski metric 7 is defined by

n(v,w) = —v’w® 4+ vl + v?w? 4 V3w

Then in an orthonormal basis {e,},

—1 1f/L:y:07
Nuw = N(€ps €v) = 1 ifp=v,1<pu<3,

0 otherwise,

which we can write in matrix form as above.

Exercise 1.56. Show that g is equal to the Kronecker delta ¥, that is, 1 if
u = v and 0 otherwise. Note that here the order of indices does not matter,

since guy = Guu-

Solution I.56. Lowering the index, g,x\g!} = gr,. But gx, = gundt, so we
identify g# = o¥.

Alternatively, since g,,, and g" are inverses, " g\, = 6# by definition. But
99 = gl s0 gl = o).
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Exercise 1.57. Show that the inner product of p-forms is non-degenerate by
supposing that (e!,...,e") is any orthonormal basis of 1-forms in some chart,
with

g(e',e') = (i),
where €(i) = +1. Show the p-fold wedge products

LA - AP

form an orthonormal basis of p-forms with

(e A Ae et A Ne) = eiy) - e(ip).
Solution 1.57. Let pn = p! A--- A pP be a p-form. If {y,w) = 0 for all p-forms
w=w!A--- AwP, then

<,LL,(.U> = <M1/\"'/\Mp7wl/\"'/\wp>
= det(g(u',w?))

But ¢ is non-degenerate, so the determinant of g(x‘,w’) must be non-zero
unless p = 0.

The inner product of basis 1-forms is

gle',el) =g =
€(p)

From the definition of the inner product of p-forms,
(€PN NeP eIt A N edP) = det(g(ei’“,ej’“)),

but g(e', e/*) = 0 if iy # ji, and so too is its determinant. Taking the inner
product of a basis p-form with itself,

(e A~ Ne et A Ae') = det(g(e, ™))

i) eliy)

since ¢ is diagonal. Therefore {ei* A --- A e} forms an orthonormal basis.
g g
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Exercise 1.58. Let £ = E,dz + E,dy + E.dz be a 1-form on R? with its
Euclidean metric. Show that

(E.E)=E;+E, + EZ.
Similarly, let

B = Bydy Ndz + Bydz Ndx + B.dx N\ dy

be a 2-form. Show that

(B,B) = B2 + B: + B2.
In physics, the quantity

S (B, B) + (B, B)

is called the energy density of the electromagnetic field. The quantity

1
is called the Lagrangian for the vacuum Maxwell’s equations, which we discuss
more in Chapter 4 of Part II in greater generality.

Solution I.58. From the definition of the inner product of 1-forms,
(E,E) = g" E,E;
= §YF,E;
=E2+ E.+ E2.
From exercise 1.57,
(dz® A dx®, dac A dx?) = det(g(da’, da?))
= g(da", dz®)g(da", dz)
— 5ac6bd
so by bilinearity,
(B,B) = (B, Bydy N dz + Bydz N\ dz + B.dx A dy)
= (B, Bydy Ndz) + (B, Bydz A dx) + (B, B.dx A dy)
= (Bydy N\ dz + Bydz A dxz + B.dx N dy, Bydy N dz)
+ (Bydy N dz + Bydz A\ dxz + B.dx A dy, Bydz A dz)
+ (Bydy N dz 4+ Bydz A\ dx + B.dx A dy, B.dz A dy)
+ (B.dx A dy, Bydy A dz)
= (Bydy N dz, Bydy A dz)
+ (Bydz A dz, Bydz A dx)
+ (B.dx A dy, Bdx A dy)
= B} + B} + BZ.

Alternatively, we could use the Hodge star and calculate (xB,xB) instead.
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Exercise 1.59. In R%, let F be the 2-form given by F' = B + E A dt, where F
and B are given by the formulae above. Using the Minkowski metric on R,
calculate —(F, F') and relate it to the Lagrangian above.

Solution I.59. The inner product of the 2-form F' with itself is

(F,F)=(B+ EAdt,B+ E Adt)
= (B,B)+ (B,ENdt)+ (ENdt,B) + (E Ndt, E A dt)
= (B,B)+ (E Ndt,E Ndt)

since each component of B is orthogonal to each component of ' Adt. Focusing
on the electric term,

(B Adt,E Adt) = det (ngt g zgi 23)

— —(B,E)
N L r = tusm - (BB
2V’ 2 ’ ’ ’

the Lagrangian density for vacuum electromagnetism on Minkowski spacetime.

1.5.3 The Volume Form

Exercise 1.60. Show that any even permutation of a given basis has the same
orientation, while any odd permutation has the opposite orientation.

Solution I.60. Let {e,} and {f,} be two bases related by T' : e, — f.
We say that {e,} and {f,} have the same orientation if det(7T") > 0 and the
opposite orientation if det(7) < 0.

Permuting the basis by some permutation 7 corresponds to a transformation
by permutation matrix 7% : e, — f,,. Since det(7) = sign(m), this preserves
the orientation when 7 is even and reverses it when 7 is odd.

Exercise 1.61. Let M be an oriented manifold. Show that we can cover M
with oriented charts o : Uy — R™, that is, charts such that the basis dz* of
cotangent vectors on R™, pulled back to U, by g, is positively oriented.

Solution I.61. Let p € U, and dim(M) = n. We have an oriented chart
¢a 1 p = o#(p) which gives us a basis {dz"} of the cotangent space T,y M.
Pulling back by ¢, we get a basis of Uy, {¢Ldxt} = {dpiat}.

The cotangent basis {dz"} admits a volume form

w=dz' A ANdz".
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Pulling back,
Orw = @h(det A - A da™)
= pidrt Ao A hda”
=dotal Ao Adpta®,

but this is the volume form corresponding to our basis of U, and is positively
oriented. Since M is oriented, we can cover M in such charts.

Exercise 1.62. Given a diffeomorphism ¢ : M — N from one oriented
manifold to another, we say that ¢ is orientation-preserving if the pullback of
any right-handed basis of a cotangent space in N is a right-handed basis of a
cotangent space in M. Show that if we can cover M with charts such that the
transition functions 4 o @El are orientation-preserving, we can make M into
an oriented manifold by using the charts to transfer the standard orientation
on R™ to an orientation on M.

Solution I1.62. Let dim(M) = n and let p € U,, ¢ € Ug where U,, Ug are
overlapping open sets with charts ¢, : p — {2#}, ¢35 : ¢ — {2’"}. Each chart
admits volume forms

w=dz' A ANdz", W =dd’' A A da™.
On the overlap U, N Ug, we have
(a0 75" da™ = Ty

with the explicit representation of T' given by partial derivatives as per exer-
cise .37, so

(a0 @z") W = (paopy") (da’ A-- Ada'™)
= (pa0pz") dx A A (pa 0 p5t) da'™
= Tjdw“ A NTRdz”
=det(T)dz' A--- A dz"
= det(7T") w.

But since the transition function is orientation-preserving, this transfers the
standard orientation on R"™ to an orientation on M.

Exercise 1.63. Let M be an oriented n-dimensional semi-Riemannian manifold
and let {e*} be an oriented orthonormal basis of cotangent vectors! at some
point p € M. Show that

elA---Ae":volp,

where vol is the volume form associated to the metric on M and vol, is its
value at p.

"We use upper indices since we’re in the cotangent space.
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Solution I.63. The canonical volume form on M with metric g, = ¢(0y,0,)
is given by
vol = /| det(g)|dz' A --- A da"™.

We have that e# = T#dx" with T as per exercise 1.36. Taking the inner product

(da#,da”) = (T~ V)ge, (T~1)ge")
= (T (T )5l %)
= (T (T71) 507 ¢(a)
= £(T (T,

«

w
«a
m
a

with € as per exercise 1.57. But (dz#, dz") = g"¥, the inverse of g, so

v
«

g = £(T (T

and taking the determinant gives us det(7") = /| det(g)|. Then
el AN =det(T)dat A - A da™
|det(g)| dz' A --- A dz™
= vol

and, evaluated at p,

1 n __
ep N\ Ne, = voly,.

1.5.4 The Hodge Star Operator

Exercise 1.64. Show that if we define the Hodge star operator in a chart
using this formula, it satisfies the property w A xu = (w, p) vol. Use the result
from exercise 1.63.

Solution I.64. Let {e”} be a positively oriented orthonormal basis on an
n-dimensional manifold. Then we define the Hodge star operator in a chart as

*(EL N Ae'P) = FelHt AL A e
where the sign is determined by sign (i, ..., %, )€(i1) - - - €(ip).
p-forms w = wre! and p = pye’ in terms of basis 1-forms are
w = wil...ipeil Ao Ner, p= ,ujl...jpejl Ao Ner,
Taking the inner product,

<waM> = WI//JJ<ei1 ARRRNA 6ipvej1 ARRRNA ejp>
= wrpy det(g(e™, ')

=wrps6™e(in) - €(ip)
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where we denote 67 = §191 ... §inip,
The Hodge dual of y is
*p = Fpgeltt A Aedn
and so . ' ' '
WA x = twrpget A Ae'P Aelrtt A A el

Notice that this will vanish if any basis elements e’ of w are equal to any
basis elements e’! of xu by antisymmetry or, by Hodge duality, are not equal
to any basis element e’ of u. Then,

WA *p = twrp g6l et A Ae At A Al
= Fwrpgdll et Ao et

= sign (i, ..., in) €(i1) - - - €(ip) wrpsd’ 7 Ao At
= sign(it, ..., in)%(01) - - €(ip) wrpsd™ et Ao Ae
= w6t e(iy) - e(ip)et Ao Ae”

= (w, p) vol.

Exercise 1.65. Calculate xdw when w is a 1-form on R3.

Solution 1.65. Denote w = w,dx + wydy + w.dz. The gradient is

dw = d(wzdx + wydy + w.dz)
= d(wedz) + d(wydy) + d(w.dz)
= dwz N dx + dwy N dy + dw, N dz
= Oywdy N dz + O,wydz N\ dx
+ Opwydx N dy + Owydz A dy
+ Opw dx N dz + Oyw.dy N dz
= (Oyw, — Owy) dy A dz
+ (Owy — Opwy) dz A dx
+ (Opwy — Oywy) dx A dy.

Then the Hodge dual of dw is

*dw = (Oyw, — Orwy) *(dy A dz)
+ (Oswy — Ozw;) *(dz A dzx)
+ (Opwy — Oywy) *(dx A dy)
= (Oyw, — Ozwy) dx + (Owy — Ozw.) dy + (Opwy — Oywy) dz,

analogous to the curl of w.
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Exercise 1.66. Calculate xd w when w is a 1-form on R3.
Solution 1.66. Denote w = w,dx + wydy + w.dz. The Hodge dual is

*w = *(wypdr + wydy + w,dz)
= wedy A dz + wydz N\ dx + w dx A dy.

The gradient of the Hodge dual is then

d*w = d(wdy N dz + wydz A dz + w.dz A\ dy)
= d(w,dy N dz) + d(wydz N dz) + d(w.dx A dy)
= dwy Ndy N\ dz + dwy AN dz N dx + dw, Adz N dy
= Opwadx A dy N dz + Oywydy N dz A\ dx + O,w.dz Adx A dy
= (Opwy + Oywy + Ow;) dx A dy A dz.

Taking the Hodge dual of this gives
*d*w = Opwy + Oywy + Ozw;,
analogous to the divergence of w.

Exercise 1.67. Give R* the Minkowski metric and the orientation in which
(dt,dx,dy,dz) is positively oriented. Calculate the Hodge star operator on all
wedge products of dax*s. Show that on p-forms,

*2 — (_1)p(4—p)+1'

Solution I.67. The Hodge dual of the 0-form is x1 = dt A dx A dy A dz = vol.

For the 1-forms,

*dt = —dx ANdy N dz, *dx = —dy N dz A dt,
*dy = dz N\ dt A dzx, *dz = —dt A dx N\ dy.
The 2-forms,
*(dt Ndzx) = —dy A dz, *(dz A dy) = dt A dz,
*(dt AN dy) = —dz N dx, *(dx Ndz) = —dt A dy,
*(dt Ndz) = —dx A dy, *(dy Ndz) = dt A dx.
The 3-forms,
*(dt N dz N dy) = —dz, *(dx Ndy N dz) = —dt,
*(dy N dz A dt) = —dx, *(dz N dt A dx) = dy.

Lastly, the Hodge dual of the volume form is x(dt A dz A dy A dz) = —1.

Since all p-forms can be written as a linear combination of all wedge products,
we can see that 2 = (—1)P4"P*! holds by inspection.
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Exercise 1.68. Let M be an oriented semi-Riemannian manifold of dimension
n and signature (n — s, s). Show that on p-forms,

*2 _ (_1)p(nfp)+s'

Solution I1.68. Let w = wrei A e be a p-form on M. Then

*w = sign(i, ..., in) €(i1) - - €(ip) wrePt A A e
SO A A
KW = sign(it, ..., in) €(i1) - - - €(ip) x(wre A+ Ae'™)
= sign(it, .., in) SigN(ipt1, - - -y in, 1, ip) €(01) - - €(in)w
= (- 1)p ( 1)’w
= (—1)P~

Exercise 1.69. Let M be an oriented semi-Riemannian manifold of dimension
n and signature (s,n — s). Let e* be an orthonormal basis of 1-forms on some
chart. Define the Levi-Clivita symbol for 1 < i; < n by
sign(iq,...,i,) all i; distinct,
€ =
i 0 otherwise.

Show that for any p-form

1 i i
W= —Wj..i,€ N NeP
| P
p!
we have ]
oL e
(*w)jl"'jnfp = f'E ! pjl"'jn—pwil'“ip'
p!
Solution 1.69. Taking the Hodge dual of w,
1 . . . . . ipt1 in
*W = o sign(ii, ..., in) €(i1) - €(ip) Wiy ..i, €™ A Ae
. 1 . . . . . . o ip1 in
= Sign(it, ..., ip, dps1s .- -, in) €(i1) - - €(ip) Wiy i €PN A",
e’re free to rename 7,11, ...,%, t0 J1,..., jn—p and, if we use the Levi—Civita
We're free t ptls--sin t0 J1, ..., Jn—p and, if the Levi-Civit
symbol,
1 o
*W = p! €(i1) - €(ip)€iyomipjyorin_pWis - @pe LA Aelnrp
= Loy e(iy)aih . gk A A pinen
p'e i1 €(ip €ky - hepg1 - Gr—p Wiy -+ip € e
1 . . , .
_ = ik ik o P A N N Jn—
= p!g g’ pekl...kph...]nfpw“...lpe A N e/nP

1 . .
— 111 . pJl Jn—
p'e P i1 in— pWirip€ A Aernr
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so if xw in terms of components is

*w = (*w) pej1 Ao Neinr,

jl"'jn—
then

1 . .
— 1t . . .
()i = 7 i iy

1.5.5 The Second Pair of Equations

Exercise 1.70. Check this result.

Solution I.70. The claim is that on Minkowski space, the second pair of
Maxwell equations,

. . 9E
V.- E =p, VxB—-——=7,
P ot
can be rewritten as
*g ds *SE = p, —8tE + *g dg *SB :j

where xg denotes the Hodge star operator on space, that is, R? with its usual
Euclidean metric.

Since F = FEydx + E,dy + E.dz is a 1-form, we have from solution 1.66 that
*g ds *SE = 8xEI + 8yEy + aZEZ
—V-E

Consider now the Hodge dual in space of the 2-form B,
*sB = xg(Bydy N dz + Bydz A\ dz + B.dx A dy)
= Bydx + Bydy + B.dx.
From solution 1.65, we get
x5 dg *xsB = xg dg(Bydzr + Bydy + B.dz)
= (0yB. — 0,By)dx + (0.By — 0, B.)dy + (0, By — 0y B, )dz
= (V x B),dx'.

Since we're in Euclidean space, we can turn vector fields into 1-forms easily.
As in exercise 1.54,

g(*s ds*sB, ) = 5ZJ(V X l?)l@] =V x g,
g(~0E,") = 090, E;0; = —~O,E
and g(j,-) = 7, s0 —0yE+xg dg s B = j is component-by-component equivalent

to the last Maxwell equation.
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Exercise 1.71. Check the calculations above.

Solution I.71. Assume that M = R x S is an oriented semi-Riemannian
manifold where S' is space and let the current be given by J = j — p dt. Suppose
dim(S) = 3 and the metric is static and of the form g = —dt? + 3g where 3g is
a Riemannian metric on S. We want to show that

*d*xF = J
is equivalent to the second pair of Maxwell equations.
Taking the Hodge dual of the electromagnetic 2-form,
*F = *B + x(E A dt)
and looking at the electric and magnetic terms separately, we get

*(E Ndt) =x(Eydz ANdt + Eydy A\ dt + E.dz N\ dt)
= FE,dy Ndz + Eydz \Ndx + E.dx N\ dy

= *SE
and
*B = %(Bydy N dz + Bydz N\ dz + B.dx A dy)
= B,dt AN dx + Bydt \ dy + Bdt A dz
= —B,dx Ndt — Bydy Ndt — B,dz N\ dt
= —*xgBAdt
SO

*F'=xgFE — xgB A dt.
The exterior derivative of this is then
dxF = dxgE — d(xgB A dt)
and we again look at the electric and magnetic terms separately to get

d(*sB A dt) =dt NOy*xgB Ndt +dg*xsB A dt
=dgxsB A dt

and
dxsE = dt N Oy xsE + dgxgE
=0 xsENdt +dg*sE
=*xgO B Ndt +dgxsE

by making use of the result from exercise .51 and reversing the exterior
product without a sign change since xgF is a 2-form, so

d*xF =xg0,E ANdt +dg*gE — dg*sB Adt.
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Applying the Hodge star to each term, for xg0; F A dt we get

*x(*gO E Ndt) = x(0yEgdy A dz A dt
+ Oy Eydz Ndx N dt
+ OB dx A dy A dt)
= —0,F,

for the 3-form on space dgxgFE we get
*dgxgF = —xgdg*xsE A dt
and for the 3-form on spacetime dg+xsB A dt we get
*dg*xgB N dt = —*gdgxgB.

Combining,
*d*xF = - FE — xgdg*sE N dt + xsdg *sB.

But xdxF = .J, so
—OE —*gdg*sE ANdt +xsdg*sB =j — pdt
and equating coefficients gives us
*gdg*sE = p, —OiFE +*gdg*sB = j.
Exercise 1.72. Show this is true if we take
1
FL= §(F + xF).
Solution I.72. On a 4-dimensional Riemannian manifold M, we say F' €
O2(M) is self-dual if ¥F' = F and anti-self-dual if xF = —F. Since **> = 1 it is

not surprising that the Hodge star operator has eigenvalues £1. That is, we
can write any F € Q?(M) as a sum of self-dual and anti-self-dual parts

F=F, +F_, *Fy = +F,.
Take F as above. Then

1
F++F,:§(F+*F+F—*F):F

and 1
ug:qui#m

1
= 5(£F +%F)

1
= £ (F £ +F)
= +Fy.
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Exercise 1.73. Show that this result is true.

Solution I.73. In the Lorentzian case things are not quite as nice, since
x? = —1 implies its eigenvalues are +i. This means that we should really
consider complex-valued differential forms on M. If we do that, we can write
any ' € Q?(M) as

F=F,+F_, *FL = +iFy.
Try
1
Fy = §(F:F*iF).
Then .
F,+F_ = §(F—*iF+F+*z'F) =F
and 1
*Fy = —(xF F %% F)
1
1
= §(iiF+*F)
:%&F—ﬂﬂ
:i;F¢nm
=+iFy.

Exercise 1.74. Show that these equations are equivalent, and both hold if at
every time ¢ we have

E = Eidz! + Fyda? + Esda?®,
B = —i(E1da® A dz® + cyclic permutations).
Solution 1.74. The electromagnetic 2-form F' = B + E A dt has Hodge dual
*F = *gF — *xgB A dt,

so F' will be self-dual if

*sFE =1B, *gB = —iFE.
These two equations are equivalent, as taking the Hodge dual of the first yields

*%4E = %giB,

but *%E = F, implying xsiB = E, which requires that xgB = —iF.
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For F and B as given,

*gE = *S(Eld:cl + E2d$2 + E3d:E3)
= Eyda?® A do® + Eyda® A da' + Ezdx' A da?
=1iB
and, although already implied,
*sB = —i *3(E1d$2 A da3 + cyclic permutations)

= —i(Eydz! 4+ Eodx® + Ezda?)
= —iE.

Exercise 1.75. Check the above result.

Solution 1.75. We are assuming F' is self-dual and and that E is a plane
wave of the form

E(x) = Eetne”

where E = E;dz/ is a constant complex-valued 1-form on R? and k € Vect(R*)*
is the fixed energy-momentum covector. By self-duality, we have

B(z) = Betkn®"

where B = —ixgE. Let us write 3k for k:jda?j, the momentum of the plane

wave. Then?
; I . u
dselk”x — Zezkux 3k.

The second Maxwell equation, 0;B + dgE = 0, turns into
9 BeFnt" 4 dgEetnt = .

But ' 4
O Ben" = _ ik BetFnr"

since we’re on a Lorentzian manifold and
dsEe™ " = (=1)'E A dge™™"
= —E A3k ien™”
=" 3 N E
since both E and 3k are 1-forms. This gives us
—ikoBe*n®" 4 it 3 AR =0
—koB+3kAE =0
SEAE = koB.

2Note the i, missing in the text.

47



Exercise 1.76. Show [that] this equation implies k,k* = 0. Thus the energy-
momentum of light is light-like!

Solution I.76. Using the result from exercise 1.75 and the relationship between
FE and B when F' is self-dual from exercise 1.74, we get

Sk ANE = koB = —ikyxgE
and, rearranging,
ikoxsE +*k NE = 0.

In terms of components,

iko*sE + 3k A B = iko(Epdy A dz + Bydz A dz + B.dz A dy)
+ kEjda’ A da?
= iko(Ezdy A dz + Eydz A dz + E dx A dy)
+ (kxEy — kyEy) de A dy
+ (kyE, — k.Ey) dy A dz
+ (k.E, — k.E.)dz A dx.

Equating coefficients, we get the homogeneous system

ikoEq + k. By — kB, = 0,
—k.E, + ikoBy + k,E, =0,
kyBy — koBy + kB, =0

which is equivalent to K;;E; = 0 for the skew-Hermitian matrix

iko k. —ky
K=|—-k. iko ke
ky —ko ik

with determinant

det(K) = iko(iko - iko + k2) — k. (—ikok, — kuky) — ky(kzk, — ikok,)
= —ik§ + ikokZ + ikok; + ikok?.

Since we require our electric field to be non-trivial, det(X) = 0 which implies
—k§+ k3 + k. + k2 =0.

Therefore k,k* = 0 and thus the energy-momentum of light is light-like.
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Exercise 1.77. Check the above result.

Solution I.77. A simple self-dual solution to the vacuum Maxwell equations
is
k =dt — dzx, E=dy—idz.
This holds since
—iko *xsE = —iko(xsdy — i xgdz)
= —iko(dz N dx — idx A dy)
= —idz ANdx — dz N dy,

SO
SkAE = —dx Ady + ide A dz = —iko*sE

as required.
From xgF = iB,
B = —ixsE
= —idz Ndx — dx N dy.
Since k2" =t — x, this gives us
E(z) = (dy —idz)e' ™),
B(z) = (—idz Adx — dz A dy)e't=)

or, in old-fashioned language,

—

E = (0, ei(t—z), _iei(t—z)), B = (O, _iei(t—x)’ _ei(t—a:)).
Write
E=FE+iB
= (0, 267"(7&733), _2Z‘ei(t7x))

which, recall from exercise 1.1, lets us express the vacuum equations as

To show that our circularly-polarised plane waves are solutions, check

V- € =28, — 2i9,e72) =

and
V x & = (0,6. — 0.6,)7+ (082 — 0,E.)]+ (0E, — 0,6, )F
= (0, —2¢"1=), 24¢(=))
=&
= i9,E
as 8t§: i€
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Exercise 1.78. Prove that all self-dual and anti-self-dual plane wave solutions
are left and right circularly polarized, respectively.

Solution 1.78. When F' is self-dual, Maxwell’s vacuum equations for plane
waves reduce to B A2k =0 and 2k A E = —ikg+gE. From the former, we also
get by self-duality that (F,3k) = 0.

Consider plane waves moving, without loss of generality, in the z-direction, so
k = kodt — kypdzx, E = Eody + E3dz.
Then

3k AE = —kidz A (Eody + Esdz)
= —k1Eodx ANdy — k1Esdx A dz

and
*xsE = Eadz A dx + Esdx A dy,

so 3%k AE = —ikgxgE requires

—ki ko) (E2) _
—iky —k1 E; e

For non-trivial solutions, k3 — k3 = 0 or ko = +k;. Assuming without loss
of generality that ko = k; (forward propagation), Es = —iEy and so, letting
E; = Eg (since we have run out of ways of writing the letter “E”),

E =Ey(dy —idz), k = ko(dt — dx).
Using the self-dual relationship B = —ixgF, in old-fashioned language we get
E = Eo(0,e0(t=2) _jeiko(t=2)) = F — F(0, —ietot=2) _giko(t=2))

and taking the real solutions only,

E(0, cos(ko(t — x)),sin(ko(t — x))),
E (0, sin(ko(t — x)), — cos(ko(t — x)))

T =

so all self-dual plane wave solutions to the vacuum equations are left circularly
polarized.

When F' is anti-self-dual,
*gll —*gBAdt = —iB —1E Adt
giving

*SE = —iB, *SB = ZE,
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SO
*k NE =koB
= iko*gE
and, just as in the self-dual case, B A 3k = 0 implies that (E,3k) = 0.

Consider again plane waves moving, without loss of generality, in the z-
direction, so

k = kodt — k1dz, E = Eqody + Esdz.
Then 2k A E = iky «sE requires

—ki —iko) (E2) _,
iko  —ky J\Bs) "

Take ko = k1 (forward propagation) to get Eo = —iE3 and so, letting E3 = Eg
this time,
E = Eo(—idy + dz), k = ko(dt — dx).

Using the anti-self-dual relationship B = ixgF, in old-fashioned language we
get

E =E (0’ _,L'eiko(t—fﬂ)’ 6ik0(t—m))7 é =E, (07 eiko(t—x)’ ieiko(t—x))
and taking the real solutions only,

E = Eo(O, Sin(k‘o(t — ZL‘)), COS(kO(t - 1")))’
B = E(0, cos(ko(t — z)), — sin(ko(t — z)))

so all anti-self-dual plane wave solutions to the vacuum equations are right
circularly polarized.

Exercise 1.79. Let P : R* — R* be parity transformation, that is,
P(ta Z,Y, Z) = (t7 -, =Y, *Z)-

Show that if F' is a self-dual solution of Maxwell’s equations, the pullback P*F
is an anti-self-dual solution, and vice versa.

Solution 1.79. From solution 1.48,
P*E=—-F, P*B = B.
The pullback of F' is therefore

P*F = P*B+ P*(E A dt)
= B—FEAdt.

o1



Taking the Hodge dual and reusing some calculations from solution 1.71,

*(P*F) =xB — x(E A dt)
= —xgFE — xgB A dt.

If F' is self-dual, xgF = iB, xgB = —iFE and

*(P*F) = —iB +iE A dt
— —iP"F.

Since P*P*F = F, we automatically get the corollary that if F' is anti-self-dual
then P*F' is self-dual.
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I.6 De Rham Theory in Electromagnetism

I was at first almost frightened when I saw such mathematical force made
to bear upon the subject, and then wondered to see that the subject stood
it so well.

1.6.1 Closed and Exact 1-Forms

Exercise 1.80. Show that this 1-form E is closed. Show that [ E = —m and
J,E=m

Solution 1.80. The 1-form in question is defined on R? — {0} as

xdy —ydx
z? + y?

The paths 79,71 : [0,1] — S* C R? describe the upper and lower half circle
of radius 1 centered at the origin with v(0) = 71(0) = (—1,0) and (1) =
71(1) = (1,0).

Denote 72 = 22 + y2. The differential of E is

dE:d<x2> Ady—d<y2> A dz
T r
(0 x 0z 9y dy
= (%ﬂdm+ 83;7’2dy> A dy (axﬂdm-l‘ 8y7‘2dy) A dx
0 x

9y

2 _ .2 2,2
—_ 4x dx/\dy—x 4y dy A dzx
r r

2 2

T
T—dz Ady
”

2_ .2
Y 4$ d:z:/\dy—y
-

so this 1-form is closed.

Note that similar to exercise 1.22, dz = cos(#)dr — rsin(f)df and dy =
sin(6) dr + 7 cos(0) df so E = df. It’s tempting to then say dE = 0 by d? = 0,
but df is not exact since # is not a well-defined O-form, so the result doesn’t
follow.

We can parameterise our paths as

Yo : t+— (cos(m(1 —t)),sin(n(1 —1))),
v1 it (cos(m(1+1t)),sin(mw (1 +1))),

93



(1) = (msin(n(1 — 1)), — cos(x(1 — 1)),
Y1 (t) = (—msin(m(1 + 1)), mcos(m(1 +t))).

Integrating along 7y,

/Yo b= /1 Eowy(10(t)) dt

B /1 —mcos(m(1l —1t)) cos(m(l —t)) — wsin(n(1l —¢)) sin(mw(1 — t))
cos(m(1 — t))2 + sin(7m(1 — t))2
= —7T/ dt

and along 1,

/m /E )) dt

/1 meos(m(1+1t)) cos(m(1 4 ¢)) + msin(m(1 + t)) sin(m(1 4 ¢))
cos(m(1 — t))2 +sin(m(1 — t))
= 7r/1 dt
0

We could have skipped the second integral by making a symmetry argument
that

dt

dt

F=—-| E.
Yo 7

Or even better, by using F = df we drop parameterisation and skip both

integrals as
0 27
/E:/dez—ﬂ', /E:/ df =m.
Y0 ™ 71 ™

Exercise 1.81. Show that R" is simply connected by exhibiting an explicit
formula for a homotopy between any two paths between arbitrary points
p,q € R".

Solution I.81. We say that a connected manifold is simply connected if any
two paths between two points p, ¢ are homotopic.

Let 70,71 : [0,1] — R™ with

70(0) = 71(0) = p, Y0(1) =7(1) =¢
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and consider
v :[0,1] x [0,1] — R",

H(s:8) = (1= s)y0(t) + sm(b).

~ is a homotopy between ~q, 1 for arbitrary p, ¢ and therefore R™ is simply
connected.

Exercise 1.82. Show that a 1-form E is exact if and only if [ £'= 0 for all
loops ~. (Hint: if w is not exact, show that there are two smooth paths ~, v/
from some point x € M to some point y € M such that fw w # fw’ w. Use these
paths to form a loop, perhaps only piecewise smooth.)

Solution 1.82. Let E = —d¢ be an exact 1-form and ~ : [0,1] — M a loop

based at p € M. Then
fE=—fa
gl v

-—Alwww»ﬁ
= [Yowa

1
=—()i¢@@»ﬁ

= —¢(p) + é(p)
= 0.

Conversely, let F be not exact. On a simply connected manifold, every closed
form is exact, so if dE = 0 then our manifold is not simply connected, implying
the existence of non-homotopic smooth paths 7g, v1 from z to y such that

/QE¢ E.
Yo 7

We can therefore construct a piecewise-smooth loop 4 that traverses g forward
and then 77 in reverse with

fE:/E— E #£0.
v Yo 71

Exercise 1.83. For any manifold M, show [that] the manifold S' x M is not
simply connected by finding a 1-form on it that is closed but not exact.

Solution I.83. Working in a chart with local coordinates (6,z',...,z"),
consider the 1-form w = df and let v be the loop traversing S! positively. We
know from solution 1.80 that dw = 0, so w is closed, and

j{w:%’?
~

so, by exercise [.82, w is not exact. The existence of a 1-form that is closed
but not exact implies that S' x M is not simply connected.
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1.6.2 Stokes’ Theorem
Exercise 1.84. Let the n-disk D™ be defined as
D" = {(ml,...,xn) ’:L’%—f——l—ﬂ:% < 1}.

Show that D" is an n-manifold with boundary in an obvious sort of way.

Solution 1.84. We need to show that D™ is equipped with charts of the
form ¢, : Uy — R™ or ¢ : Uy, — H", where U, are open sets covering D"
and H" = {x € R" | 2™ > 0} is the closed half-space, such that the transition
functions @, o 9051 are smooth where defined.

Let 7; : R® — R™ !, defined as
s wes (at, . at atT
be the projection that drops the i*® coordinate, i # n.

Recall the inverse stereographic projection from solution 1.3 with o = 1, which
we denote as

1
ajrl:a:»—> T2+1(2x1,...,2x",r2—1)

where r? = 23 + .- + 2.

Consider the composition ¢ = m; o ajrl,

Y1 x (22!, ..., 227 22 20 2 — 1),

and notice that ¢y : D™ — H". Indeed, on the boundary of D",

lim oy (z) = (z',..., 271 2 2™ 0)
r2—1
which is in OH".
We can similarly construct ¢_(z) = —p(—x) corresponding to v = —1. Then

obviously the transition functions are smooth where they are defined.

Exercise 1.85. Check that the definition of tangent vectors in Chapter 1.3
really does imply that the tangent space at a point on the boundary of an
n-dimensional manifold with boundary is an n-dimensional vector space.

Solution I.85. We say that a function on H" is smooth if it extends to a
smooth function on the manifold {R" | ™ > —¢} for some € > 0.

We say that a function f: M — R is smooth if for any chart o,, f o ;! is
smooth as a function on R™ or H".

Let p € OM. Then a tangent vector at p, v, : C*°(M) — R, exists since f is
smooth up to and including the boundary by our extension of the definition of
smoothness. Therefore T, M is an n-dimensional vector space as usual.
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Exercise 1.86. For the mathematically inclined reader: prove that [,,w is
independent of the choice of charts and partition of unity.

Solution I.86. Let dim(M) =n, w € Q" (M) and {p,} be an oriented atlas
on M.

For some charts ¢ and ¢ on an open set U, (¢~ ') w and (¢~')"w are n-forms
on ¢(U) and ¥ (U), respectively. We can therefore construct an orientation-
preserving diffeomorphism o =! : (U) — o(U).

Then
Jo=[
U (U)
= [ (eov ) () w
»(U)
= [ W
P(U)
and therefore the integral of w on M is independent of the choice of charts.

For oriented atlases {(¢a,Ua)} and {(W;ga Vﬂ)}, we have partitions of unity
{fa} and {f3}, say. Then

0= fuo =Y fh
o 5

and

w = w
Jye=2 ],
=22 Jalpw
a B /Ua
=35 fatte
a B Vs
=5 [t
B /Vﬂ
In terms of local coordinates, under charts ¢, and gp’ﬁ we may write

fow = gadaz' A--- A da™, faw = ggdxll A Ad™.

But
Godzt A Nda™ = go det(T)dz' A - A dz™

SO gg = gadet(T) on overlapping charts, with the Jacobian T' as per exer-
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cise 1.36. Then

:Z/ godzt Ao A da"
%)

:Z/ g;gdxll/\'--/\dx'”
5 Yl

Therefore the integral of w on M is independent of the partition of unity.

Exercise 1.87. Show that 9D" = S™~ !, where the n-disk D" is defined as in
exercise 1.84.

Solution 1.87. The boundary of M is the set of points p € M such that
some chart ¢, : U, — H"™ maps p to a point in 9H"™. We've already seen from
solution 1.84 that when 72 — 1, ¢, (p) € OH". This corresponds to

aD”:{(xl,...,...,xn)’x%—k---%—x%:l}zsn_l.

Exercise 1.88. Let M = [0,1]. Show that Stokes’ theorem in this case is
equivalent to the fundamental theorem of calculus:

| CPle)de = 1) - F(0).

Solution I.88. Stokes’ theorem states that for M an oriented n-manifold with
boundary and w € Q"~!(M), where either M is compact or w has compact
support,

/ dw:/ w. (Stokes’ theorem)
M oM

Let w = f be a 0-form, so dw = df = f’dz. Then

and so, by Stokes’ theorem,

1
| r@de=[ @
0 8[0,1]
= f(1) = f(0).
The boundary 9[0,1] = {0} U {1} where the sign denotes orientation.

While the integral over [0, 1] has the Lebesgue measure on R, it induces on its
boundary the signed counting measure. Hence on the boundary integral, the
boundary has non-zero measure.
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Exercise 1.89. Let M = [0, 00) which is not compact. Show that without the
assumption that f vanishes outside a compact set, Stokes’ theorem may not
apply. (Hint®: in this case Stokes’ theorem says [;° f'(z)dz = —f(0).)

Solution 1.89. Let f be a 0-form on M. The boundary of M is OM = {0}~
so, by Stokes’ theorem,

|7 r@d= [ f@)=-100)
0 {0}

But a standard Riemann integral of f over M gives

00 b
/ f(z)dz = lim / f'(z)dz
0 b—o0 Jo
= lim (b) - f(0),
—00
which disagrees with Stokes’ theorem unless li_}rn f(z)=0.
T—00

Exercise 1.90. Show that any submanifold is a manifold in its own right in a
natural way.

Solution 1.90. Given a subset S of an n-manifold M, we say that S is a
k-dimensional submanifold of M if for each point p € S there is an open set
U, of M containing p and a chart o, : U, — R" such that S N U, = ¢ (RF).

Consider the induced topology on .S, so open sets are of the form V, = SNU,.
The collection {V,} covers S since it is not possible to find a point p € S such
that p ¢ U, for any «, as {U,} covers M.

We can construct maps on S to RF by taking the restriction of ¢, to M and
projecting. This gives us charts

¢a3Va—>Rk7 wazﬂoﬁﬂm
where 7 : R” — R¥ is a projection. The collection {1} forms an atlas for S.

The transition functions ¥, o 1/1/5_,1 : R¥ — R* are smooth where they are
defined as each 1, inherits the same smoothness properties as those of .

Therefore S is a manifold under the induced topology.
Exercise 1.91. Show that S”~! is a compact submanifold of R™.

Solution 1.91. S"~! is a submanifold of R™ under stereographic projection as
in solutions 1.3, 1.84, which gives us an atlas and smooth transition functions.

S~ is bounded since ||p|| = 1 for all p € S"~L.

Let f : R® — R be given by f(z1,...,2,) = 23+---+22. Since f is continuous,
its inverse will map closed sets to closed sets. f_l({l}) = 9571 50 571 s
closed.

3The original hint uses the wrong boundary.
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Since S"~! C R” is closed and bounded, by the Heine-Borel theorem S™! is
compact.

Exercise 1.92. Show that any open subset of a manifold is a submanifold.

Solution 1.92. Recall from exercise 1.4 that if M is a manifold and U an
open subset of M then U with its induced topology is a manifold.

For each point p € U, there is an open set U, of M containing p and a chart
Yo : Uy — R™ such that U N U, = ¢ (R¥), so U is a submanifold of M with
charts m o ¢, restricted to U, where 7 is a projection as in solution 1.90.

Exercise 1.93. Show that if S is a k-dimensional submanifold with boundary
of M, then S is a manifold with boundary in a natural way. Moreover, show
that 05 is a (k — 1)-dimensional submanifold of M.

Solution I1.93. Take solution 1.90 and replace R with H and the result that
S is a manifold with boundary follows immediately.

We know that 9S is a manifold of dimension k — 1. To see that it is a
submanifold of S, we note that for each point p € 95 there is an open set U,
of S containing p and a chart ¢, : U, — H¥ such that S N U, = o3 (HF1).
Since 95 is a submanifold of S and S a submanifold with boundary of M, 95
is a submanifold of M.

Exercise 1.94. Show that D" is a submanifold of R™ in this sense.

Solution 1.94. For interior points p € D™\ dD", we have for an open set U in
R"™ that UL NU = @EI(R”) for Uy an open set of D,, and ¢4 the corresponding
chart, as in solution 1.84.

For boundary points p € D™, we similarly have UL NU = ¢£1(H”).
Therefore D™ is a submanifold of R™.

Exercise 1.95. Suppose that S C R? is a 2-dimensional compact orientable
submanifold with boundary. Work out what Stokes’ theorem says when applied
to a 1-form on S. This is sometimes called Green’s theorem.

Solution I1.95. Let w = w,dx + wydy be a 1-form on S. Taking the exterior
derivative,

dw = Opwydz N dy + Oyw,dy A dx
= (Opwy — Oywy) dz A dy.

Therefore, by Stokes’ theorem,

/as(wxdaz + wydy) = /S(axwy — Oywy) dz N\ dy.
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Exercise 1.96. Suppose that S C R? is a 2-dimensional compact orientable
submanifold with boundary. Show [that] Stokes’ theorem applied to S boils
down to the classic Stokes’ theorem.

Solution I1.96. Let w = wydz +wydy +w.dz be a 1-form on R3, so the exterior
derivative, as in solution 1.65, is

dw = (Oyw, — O wy) dy N dz
+ (Oywy — Opwy) dz A dx
+ (Opwy — Oywy) dx A dy.

Let F' = F'0; be the vector field dual to w, so F* = gijwj = w; since we're in
R3. Then in old-fashioned vector calculus,

/dez/s(vXﬁ).dA’

where dA = (dy Ndz,dz N\ dx,dx A dy) is the oriented area element and

/w: Fodr'= [ F.ds
oS oS oS

with line element ds = (dz, dy, dz). Therefore, by Stokes’ theorem,

Exercise 1.97. Suppose that S C R? is a 3-dimensional compact orientable
submanifold with boundary. Show Stokes’ theorem applied to S is equivalent
to Gauf’ theorem, also known as the divergence theorem.

Solution 1.97. Let w = w,dr+wydy+w.dz be a 1-form on R3. By solution 1.66,
*w = wedy N dz + wydz N dx + w.dx A dy

and
d*w = (Opwz + Oywy + O.w;) dx A dy A dz.

Again, let F' be the vector dual to w. Then

/d*w:/v-ﬁdv
S S

where dV is the volume form and

/ *w:/ F.dA
oS oS

where dA is as in solution 1.96. Therefore, by Stokes’ theorem,
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1.6.3 De Rham Cohomology

The boundary of a boundary is zero.
Exercise 1.98. Show that the pullback of a closed form is closed and the
pullback of an exact form is exact.
Solution I.98. Recall from §I.4.2 that the exterior derivative is natural.
Let w € QP(M) be a closed form and ¢ : N — M. Then
d("w) = 6" (dw) = 0

since w is closed.
If instead w is exact, so w = du for some p € QP~1(M), we get

¢'w = ¢"(dp) = d(¢* 1)
which is exact.

Exercise 1.99. Show that given any map ¢ : M — M’ there is a linear map
from HP(M') to HP(M) given by

[w] = [¢7w]
where w is any closed p-form on M’. Call this linear map
¢*: HP(M') — HP(M).
Show that if ¢ : M" — M" is another map, then
(V)" = ¢™y".
Solution 1.99. Recall that for
ZP(M) = ker(d : QP(M) — QPFL(M)),
ZP(M) 2 BP(M) = im(d : QP~1(M) — QP(M)),

the spaces of closed and exact p-forms on M respectively, we define the p**
de Rham cohomology group of M as

(M) = 2O g gy,

Let w and w’ be cohomologous. Then naturally the pullback will preserve the
cohomology, by exercise 1.98. Explicitly,

¢*w] = [¢"w]

= [¢* (W' + dp)]
= [p*W + ¢*(dp)]
= [p*W +d(¢" )]
= [¢"w']

= ¢"[w'].
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Introducing another linear map ¢ : M’ — M",
(Vo ¢) W] = [(¥o¢)w] = [¢"P w] = ¢"¢"[w]
by exercise 1.31, so (¢¥¢)" = ¢*yp* when acting on cohomology classes in

HP(M").

1.6.4 Gauge Freedom

Nothing to do.

1.6.5 The Bohm—Aharonov Effect

Exercise 1.100. Do this. (Hint: show that xdz = rdr A df.)

Solution 1.100. We have cylindrical coordinates z,r,6 on R, with corre-
sponding 1-forms dz defined everywhere, dr defined away from r = 0 and df
the closed but not exact 1-form from solution 1.80.

Recall that
dx = cos(0) dr — rsin(6) db,
dy = sin(0) dr + r cos(0) db.

Taking the Hodge dual of dz,

*dz = dx N\ dy
= (cos(8) dr — rsin(6) df) A (sin(8) dr + r cos(8) df)
= rcos(0)%dr A df + rsin(0)*dr A d6
=rdr Adb.

Suppose the current is cylindrically symmetric and flows in the z-direction, so
that j = f(r)dz. Then away from the z-axis,

*xj =f(r)dz = f(r)rdr Adb.

Exercise 1.101. Show that xdf = %dz Adr.
Solution 1.101. Taking the Hodge dual of df,

xdf) = *<mdy—ydl')
2 +y2
xdz Ndx —ydy Ndz
1 .
= —(cos(f) dz A dz — sin(0) dy A dz).
r
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But, from solution 1.100,

cos(0) dz A dxz = cos(8) dz A (cos(8) dr — rsin(6) df)
= cos(0)*dz A dr — rcos(6) sin() dz A df

and
sin(0) dy A dz = sin(0) (r cos(0) df + sin(0) dr) A dz

= —rcos(0) sin(f) dz A df — sin(#)*dz A dr,

SO 1
*df = = (cos(0)dz A dr + sin(0)*dz A dr)
T
1
= —dz Ndr.
;

Exercise 1.102. Check that dxB = xj holds if and only if ¢'(r) = rf(r).
Solution 1.102. We have that xB = g(r) df, so
dxB = dg(r) df
=g (r)dr Adf

since df is closed. From solution 1.100, xj = f(r)rdr A df, so if dxB = xj, we
require ¢'(r) = rf(r).

1.6.6 Wormbholes

Exercise 1.103. Work out the details. (Hint: define a map p : St x S7~1 — St
corresponding to projection onto the first factor, and let the 1-form w on
St x S"~1 be the pullback of df by p.)

Solution 1.103. Let df € Q'(S!) be the classic closed and not exact 1-form
we’ve seen already. Using the projection

p: St xSt 5
: (91, (92, . ,Hn)) —> 91,
we can define a 1-form on the torus as w = p*df € QL(S! x S"~1).

By solution 1.99, w is closed and not exact since p* is a linear map from H'(S?!)
to H'(S! x §771).

We can also show this without leveraging cohomology, since we know that w
is closed by exercise 1.98. Then the result that w is not exact follows directly
from solution 1.83 with M = S" 1, as

]{qlw#o.
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Exercise 1.104. In the space R x S? with the metric g given above, let E be
the 1-form
E =e(r)dr.

Show that dE = 0 holds no matter what the function e(r) is, and show that
d*E = 0 holds when
. q
e(r) =

Amf(r)*

Solution 1.104. Our metric on R x S? is g = dr? + f(r)*(d¢? + sin(¢)*d6?)
where f is positive for all 7 and f(r) — r when |r| is sufficiently large.*
We want our 1-form to satisfy the vacuum electrostatic equations

dE =0, dxE = 0.
FE is closed since

dE = ¢€'(r)dr Adr = 0.
The volume form is

vol = /| det(g)|dr A dO A do
= f(r)?sin(e) dr A dO A do.

By definition of the Hodge star, dr A xdr = (dr,dr)vol = vol. Denoting
*dr = adf N d¢ where « is a normalisation factor,

dr ANxdr = adr A df N d¢p = vol,

fixing « and giving us *xdr = r)2 sin(¢) df A d¢, so

r)f(r ) sin(¢) df A do)

7n(e(r)f( )?) - sin(¢) dr A d6 A dg.
Then for dxE = 0, we require e(r) f(r)? to be constant in r. Let this constant
be H? say, for some arbitrary ¢. Then

. q
(r) = Arf(r)?

and dxF = 0.
Exercise 1.105. Find a function ¢ with E = —d¢.

Solution 1.105. Denote the radial path from 0 to r by 7. Then a scalar
potential is (up to a constant in r)

¢(r)=—/VE:—£T/OTJ$’)2.

4We approach 7, not r2, since the latter is not Euclidean.
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Exercise 1.106. Let S? denote any of the 2-spheres of the form {r} x S? C
R x 82, equipped with the above volume form. Show that

/ *E =q.
52

Solution 1.106. Our (positively oriented) volume form on S? is r%sin(#) df A
d¢. Taking the Hodge dual, we get

q

47rf(7“)2

= L sin(¢) do A do,
47

*FE = *dr

SO

/ o = / L sin(¢) do A déb
SQ
- /52 47T7°2
= L/ vol
472 Jg2

=4q,
charge without charge.

Exercise 1.107. With this clue, work out a careful answer to the riddle.

Solution I1.107. The riddle is: why does the integral of xE over any 2-sphere
of constant r give ¢, when we expect to measure charge g over one mouth of
the wormhole and —¢q over the other?

Label each mouth “positive” and “negative”, where we orient ourselves such
that if starting at r < 0 and travelling in the positive r direction, we are
entering the negative mouth of the wormhole and exiting the positive mouth,
and vice versa.

In exercise 1.106 we assumed our 2-sphere had positive radius. We need to
consider inverted 2-spheres to measure the charge over the negative mouth.

Using the negatively oriented volume form —r?sin(6) df A d¢ gives us

/ * = —
S2

Exercise 1.108. Describe how this result generalises to spaces of other di-
mensions.

and resolves the riddle.

Solution I1.108. By Maxwell, d xE = p, so xF closed means the electric charge
density p = 0.
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In general, for an n-dimensional manifold M, closed 1-form E and (n — 1)-
submanifold S C M, if
/ *E #0
S

then the (n — 1)-form %xFE is closed but not exact. The existence of closed
but not exact (n — 1)-forms implies the de Rham cohomology H"!(M) is
non-empty.

Exercise 1.109. Show using Cartesian coordinates that w is closed on R®—{0}.

Solution I.109. The 2-form w is given by

_xdyNdz+ydz Ndr+ zdr Ndy
- (a2 +y? + 22) '

Splitting into three terms, take the derivative of the first,

dyNd
raynaz 5 =0y a T dr ANdy Ndz
2 4 42 4 22)3 2 4 02 4 22)2
(22 +y* + 22) (2 +y? +22)
(22 + 42 + 22)? — 322 /a2 1 2 1 22
= e z2)3 de Ndy N dz
2 4,2 4 2 2
-3
_ Ty ;E dz Ndy N dz.
(22 +y? + 22)2

3
2

d

The y and z terms are similar, by symmetry, so
3(x? 4+ y? + 22) — 322 — 3y? — 322

dw = 3
(2 4+ y? + 22)2

der Ndy ANdz = 0.

Exercise 1.110. Generalise these examples and find an (n—1)-form in R"—{0}
that is closed but not exact. Conclude that H"~!(R" — {0}) is nonzero.

Solution 1.110. We want to generalise the 1-form df of solution 1.80 and
2-form w of exercise 1.109 to a closed but not exact (n — 1)-form.

The form will obviously be
Siaidzt A AdrtTEAd I A A da?
w= - .
(&t + -+ af)?

Taking the exterior derivative of the first term,

ridz? A - A dz" 1
n — Ul
(x%+...+$%)2 ($%++$721)
B ($%+..._|_g;%)5—nm%(z%+"'+$%)§_1d LacooAde™
= (x2+...+x2)n €T XL
1 n
TS Y
(a3 4 +a2)2

de' A - A da™

n
2
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By symmetry, the zo, . .., x, terms are similar and therefore, as in solution 1.109,
dw = 0.

Let S ¢ R™ — {0} be an (n — 1)-submanifold. Then

/Sw;é()

since it is not possible to deform S due to the puncture at the origin, so by
Stokes’ theorem w is not exact.

By the existence of a closed but not exact (n — 1)-form, H" 1 (R" — {0}) is
non-empty.

1.6.7 Monopoles

Exercise I.111. Check this. (Hint: show that B = = sin(¢) df A d¢.)
Solution I.111. The vacuum magnetostatic equations are

dB =0, d*B = 0.
On R x S? with metric g as in exercise 1.104, we can find a closed but not
exact magnetic 2-form by duality. Using B = xF,

mdr
am f(r)®

= % sin(¢) do A df

and on integrating over any 2-sphere,

/ / — sin(¢) do A db
52 52 4T

VO
47r7“2 52
= m7

the magnetic charge.
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Part 11
Gauge Fields

II.1 Symmetry

Symmetry dictates interactions.

II.1.1 Lie Groups

Exercise II.1. Show that SO(3, 1) contains the Lorentz transformation mixing
up the t and x coordinates:

cosh(¢) —sinh(¢) 0 0
— sinh(¢) cosh(¢) 0 0
0 0 10

0 0 0 1

as well as the Lorentz transformations mixing up ¢ and y, or ¢t and z coordinates.

Solution II.1. Let A be the Lorentz transformation with rapidity ¢ mixing
up ¢ and x given above. Then for some vector v = v#0,, on R%, the components
of Av transform as

cosh(¢)v? — sinh(¢)v?
1

—si 0
AR = sinh(¢)v ;;cosh(qﬁ)v

v3

On Minkowski space with metric n as in exercise 1.55, the inner product of
two vectors v, w transformed under A is

n(Av, Aw) = — (cosh(¢)v° — sinh(¢)v') (cosh(¢p)w’ — sinh(p)w?)
+ (—sinh(¢)v® 4 cosh(¢)v') (— sinh(¢)w® + cosh(¢)w!)
+ v?w? + v3w?

$)*0"w® + cosh(¢) sinh(¢)v w?

) cosh(¢)v'w® — sinh(¢)?*vw?

+ sinh(¢)*v%w® — sinh(¢) cosh(¢)v w'

— cosh(¢) sinh(¢)v'w® + cosh(¢)?viw?

+ v2w2 + U3w3
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= — (cosh(¢)? — sinh(¢)?*)v’w® + (—sinh(¢)? + cosh(¢)?)v'w!
+ (cosh(¢) sinh(¢) — sinh(¢) cosh(¢))vw!
+ (sinh(¢) cosh(¢) — cosh(¢) sinh(¢))v'w’
+ v?w? + v3uw?

= — 00" + vlw! + v?w? 4+ viuw?

= 1(v,w)

so A preserves the inner product and is therefore in O(3,1). Taking the
determinant gives

det(A) = cosh(¢)? — sinh(¢)* = 1
so A € SO(3,1).

The Lorentz transformations with rapidity ¢ mixing up the ¢t and y and ¢t and
z coordinates are

cosh(¢) 0 —sinh(¢) 0 cosh(¢) 0 0 —sinh(¢)
0 1 0 0 0 10 0
—sinh(¢) 0  cosh(¢) O’ 0 0 1 0 ’
0 0 0 1 —sinh(¢) 0 0  cosh(¢)

respectively. By similar calculations, these two boosts preserve the inner
product and have determinant 1, so are also in SO(3,1).

Exercise I1.2. Show that SO(3, 1) contains neither parity,
P (tv T, Y, Z) = (ta -, Y, _Z)7

nor time-reversal,
T: (t,.’l?,y, Z) = (—t,x,y,z),

but that these lie in O(3,1). Show that the product PT lies in SO(3,1).

Solution II.2. We can represent these transformations as

1 0 0 O -1 0 0 0
P=lo 0 o) T=| 0010
0 0 0 -1 0 0 01
For vectors v, w,
n(Pv, Pw) = —0"w® + vtw! + v?w? + v3w? = n(v,w),
n(Tv, Tw) = —0°w® + v w! + v*w? + v3w?® = n(v, w)

so P and T are in O(3,1), which implies PT € O(3,1).

det(P) = det(T) = —1 so P and T are not in SO(3,1). But
det(PT) = det(P) det(T) =1

so the product PT € SO(3,1).
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Exercise I1.3. Show that SL(n,R), SL(n,C), O(p,q), SO(p,q), U(n) and
SU(n) are really matrix groups, that is, that they are closed under matrix
multiplication, inverses, and contain the identity matrix.

Solution I1.3. Let u, v be vectors on C" with some metric g and A, B be
matrices in some group G.

e For G one of O(p,q), U(n),

((AB)v, (AB)w) = (A(Bv), A(Bu))
= (Bv, Bw)
= <'Ua w)
so AB € G, implying G is closed under multiplication. The same holds for

SO(p, ¢) and SU(n) but we additionally require det(AB) = 1, which is true
as det(AB) = det(A) det(B).

This secondary requirement also applies to SL(n,R) and SL(n,C), so both
of these groups are closed as well.

¢ For G one of the orthogonal or unitary groups, A € G is a rotation about
some axis by some angle , say. Then a matrix A~! rotating by —6 will
satisfy AA™! = A~'A = id. For A unitary, A~! = Af, the conjugate
transpose, and for A orthogonal this reduces to the transpose.

For G any of SL(n,R), SL(n,C), SO(p,q), SU(n), A is invertible since
det(A) = 1. The inverse A~! € G since det(A™!) = det(A) ™ = 1.

e The standard n x n identity matrix satisfies
(idu,idv) = (u,v), det(id) =1
so the identity is in SL(n,R), SL(n,C), O(p, q), SO(p, q), U(n) and SU(n).

Exercise I1.4. Show that the groups GL(n,R), GL(n,C), SL(n,R), SL(n,C),
O(p,q), SO(p,q), U(n) and SU(n) are Lie groups. (Hint: the hardest part is
to show that they are submanifolds of the space of matrices.)

Solution II.4. Let A, B be matrices in GL(n,C). The product map acts ele-
mentwise as (ab)ij = a;jxby;j, which is smooth since the product is a polynomial
of elements of A and B. Inversion by Cramer’s rule,

-1 _ adj(A)
A= AT = Ger(a)y

is also smooth since entries of adj(A) are polynomials of entries of A.

Let M (n,C) be the space of n x n matrices over C. This is trivially a smooth
2n2-manifold since it is homeomorphic to R2"*. The map det : M (n,C) — C
is smooth, so GL(n,C) = det™!(C\ {0}) is an open subset of M(n,C) and
therefore a submanifold (via solution 1.90), so GL(n,C) is a Lie group.
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GL(n,R) is a Lie group, analogously.

Closed subgroups of Lie groups are Lie groups, so the classical groups SL(n, C),
SL(n,R), O(p, q), SO(p,q), U(n) and SU(n) are Lie groups.

Exercise 11.5. Given a Lie group G, define its identity component Gy to
be the connected component containing the identity element. Show that the
identity component of any Lie group is a subgroup, and a Lie group in its own
right.

Solution IL.5. Let g,h € Gj.

Since G is a Lie group, the product map

IU,ZG()XG()—>G,
: (g, h) = gh

is continuous so, since Gy x G is connected, the image pu(Gg x Gy) is connected.
p(id,id) = id, so gh € Gy and therefore G is closed.

Similarly, consider the inversion map g — ¢! which is also by definition con-
tinuous, so its image is connected. Since id = id !, this connected component
is the identity component.

G| is therefore a subgroup of G. Smooth product and inverse operations imply
it is a Lie group.

Exercise I1.6. Show that every element of O(3) is either a rotation about
some axis or a rotation about some axis followed by a reflection through some
plane. Show that the former class of elements are all in the identity component
of O(3), while the latter are not. Conclude that the identity component of

0(3) is SO(3).
Solution I1.6. Let Q € O(3). Since QRT = id, det(QQT) = 1, so det Q = £1.
Let R € O(3) be a rotation. This is smoothly parameterised by the angle § and

when 6 = 0, R = id. Therefore det(R) = 1 and R is in the identity component.
Therefore R € SO(3) C O(3).

Let P € O(3) be a reflection, which is not orientation-preserving, so det(P) =
—1. The composition RP € O(3) which also has det(RP) = —1. Since reflec-
tions are not continuous transformations and since the identity cannot be of
the form RP, this is a disconnected component of O(3).

Exercise I1.7. Show that there is no path from the identity to the element PT
in SO(3,1). Show that SO(3, 1) has two connected components. The identity
component is written SOg(3,1); we warn the reader that sometimes this group
is called the Lorentz group. We prefer to call it the connected Lorentz group.

Solution II.7. From solution II.1,

14 g 174 g
Nuw A A gvPw’ = notw” = npevw?,
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so the general Lorentz group O(3,1) is characterised by
NN oA o = 1)po.
Looking only at the time component,
N Ao o = —A% A % + AgA%y

and, equating with ngy = —1,

f= 1+ (M) 21,

(A%)
implying either A% > 1 or A% < 1. Therefore there is no smooth path between
transformations with A% of different sign, so they must lie in disjoint connected

components.

Transformations with A% > 1 preserve the direction of time. Since §J = 1 (the
identity preserves the direction of time), the group of proper orthochronous
Lorentz transformations is the identity component, SOq(3,1).

The Klein four-group Vi = {id, P,T, PT} is a discrete subgroup of O(3,1). The
transformation PT € SO(3, 1) has (PT)) = —1, so PT is not path-connected to
the identity component. We therefore have four disjoint connected components
of the Lorentz group,

SOy(3,1) = {A € 0(3,1) | det(A) = 1,A% > 1},
SO(3,1)\ S00(3,1) = {A € O(3,1) | det(A) = 1,A% < 1},
00(3,1)\ S00(3,1) = {A € O(3,1) | det(A) = —1,A% > 1},
0(3,1)\ (00(3,1) USO(3,1)) = {A € 0(3,1) | det(A) = —1,A° < 1},

the proper orthochronous, proper non-orthochronous, improper orthochronous
and improper non-orthochronous transformations, respectively. These are
related by elements of V.

p o \

(3,
0(3,1 0(3,1) USO(3,1)) %}}T—> 00(3,1) \ SOp(3

K J
0(3,1) \ SOy (3,1)

73



Exercise I1.8. Show that if p : G — H is a homomorphism of groups, then

p(l) =1
and
- -1
plg™") = plg)
(Hint: first prove that a group only has one element with the properties of the

identity element, and for each group element ¢ there is only one element with
the properties of g~ 1.)

Solution II.8. Let e, f be identity elements of G. Then e = ef = f, so the
identity is unique.

Let fg = gf = hg = gh = 1. Then fgf = f = fgh = h so the inverse is
unique.

Given two groups G and H, we say a function p : G — H is a homomorphism
if p(gh) = p(g)p(h).
p(g) = p(idag) = p(ida)p(g)

so p(idg) = idg.
idy = plide) = p(9~"9) = p(g~")p(9)
so p(g™) = p(g) .
Exercise I1.9. A 1 x 1 matrix is just a number, so show that
(1) = {e |9 € R}.

In physics, an element of U(1) is called a phase. Show that U(1) is isomorphic
to SO(2), with an isomorphism being given by®

iy [cos(f) —sin(8)
p(e7) = <sin(9) cos(f) )’
(Hint: rotations of the 2-dimensional real vector space R? are the same as

rotations of the complex plane C.)

Solution I1.9. p: U(1) — SO(2) is a homomorphism by

(
01y o i0sy _ [cos(01) —sin(6q)) [cos(f2) —sin(f2)
ple™)p(e™) = (sm( 61) 005(91)> (sin(ﬁg) cos(92)>
~ [cos(6y +62) —sin(6; + 62)
~ \sin(6y +62)  cos(6y + 62)
= p(e'1+0)
= ple

61 192)

5The direction is conventional, but we use positive rotations here to make the isomorphism
more direct.
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For some z € C with z = x + iy, we have

0

"2 = xcos(0) — ysin(0) + i(wsin(0) + ycos())

and for some vector v € Vect(R?) with components (z, ),
(c?) x\  (zcos(f) —ysin(6)
P y ) \wsin(f) +ycos(f) )"
We can equate the real and imaginary components of ¥z with the = and y
components of p(e?)v. Since every element of SO(2) (represented as matrices)

is of the form p(e®), p is surjective. Since p takes every element of U(1) to a
distinct element of SU(2), p is injective.

Thus p is a homomorphic bijection and therefore U(1) = SO(2).

Exercise I1.10. Given groups G and H, let G x H denote the set of ordered
pairs (g,h) with ¢ € G, h € H. Show that G x H becomes a group with
product

(9,h)(d'; 1) = (9g, hi'),

identity element
1=(1,1)

and inverse
(g.h) " = (g " n7h).

The group G x H is called the direct product or direct sum of G and H,
depending on who you talk to. (When called the direct sum, it is written
G @ H.) Show that if G and H are Lie groups, so is G x H. Show that G x H
is abelian if and only if G and H are abelian.

Solution I1.10. G x H is obviously a group.

Let GG, H be Lie groups. Then G x H is a Lie group since it is a manifold with
the product topology as per solution I.5.

Let G, H be abelian. Then G x H is abelian since

(9,0)(g', 1) = (99', hh') = (¢'g, W'h) = (¢', W) (g, h).

Suppose G is not abelian. Then

(9, 1)(d, W) = (gg', 1) # (g9, W) = (¢'W)(g,1)

and equivalently if H is not abelian, so G x H is abelian if and only if G and
H are abelian.
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Exercise II.11. Show that [the] direct sum of representations is really a
representation.

Solution II.11. A representation of G on V is a homomorphism p : G —
GL(V).

Let G be a group and let p be a representation of G on V and p’ be a
representation of G on V'. Let p @ p/, the direct sum of the representations p
and p/, be the representation of G on the direct sum V & V' given by

(p@ p)(g)(v,v") = (p(g)v, ' (g)V)
forallve V, v e V.

Let g,h € G. Then

so p@®p : G — GL(V @ V') is a homomorphism and therefore p @ p’ is really
a representation of Gon V @ V.

Exercise I1.12. Prove that the above is true.

Solution II1.12. Let V', V' be vector spaces with bases {e;}, {€/}, respectively.
The tensor product V @ V' is the vector space whose basis is given by {e; ® e;}.
Given v = v'e; € V and v/ = v/’ e € V', we define the tensor product

vV =vwe; ® e;.

The universal property: given any bilinear function f: V x V/ — W for some
other vector space W, there is a unique linear function F': V ® V/ — W such
that f(v,v") = F(v ®').

VxV — VeV
\‘ lF
w
f is bilinear, so
fo,0') = f(v'ei,ve)) = v fes, €)).
Setting f(v,v") = F(v®v'),
F(v®v') = v f(e, e;) = v F(e; ® e})

so F' is linear and unique, satisfying our universal property.
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Exercise I1.13. Show that this is well-defined and indeed a representation.

Solution II.13. Suppose that p is a representation of G on V and p’ is a
representation of G'on V’. Then the tensor product p® p’ of the representations
p and p’ is the representation of G on V ® V' given by

(p@p)(g)(ve) =plg)vep (g
This is well-defined since it follows that

p(g)v ® p'(g)v" = v'v" p(g)e; ® p'(9)e]-
Let g, h € G. Then, similarly to exercise I11.11,

(p® p')(gh) = p(gh) ® p'(gh)
= (p(g)p(h) @ (¢'(9)p(h))
=(p@p)(g) - (pp)(h)

so pRp : G — GL(V®V') is a homomorphism and therefore a representation
of Gon VeV,

Exercise I1.14. Given two representations p and p’ of G, show that p and p’
are both subrepresentations of p & p'.

Solution II.14. Suppose p is a representation of G on V and suppose that V'
is an invariant subspace of V, i.e. if v € V' then p(g)v € V' for all g € G. A
subrepresentation of p is a representation p’ of G on V' satisfying p/(g)v = p(g)v
for all v € V.

Consider the invariant subspace V@ {0} CV & V.

p(g)(v,0) = (p(g)v,0)
= (p(g)v, p'(9)0)
= (p®p)(9)(v,0)

so p is a subrepresentation of p @ p/. By symmetry, p’ with invariant subspace
{0} & V' is also a subrepresentation.

Exercise I1.15. Check that this is indeed a representation.

Solution I1.15. For any n € Z, U(1) has a representation p,, on C given by

pn<ei9)v — einH,U‘

To see that this is a representation, we need to show that p, : C = GL(C) is
a homomorphism for all n. For 01,60s € R,

pn(ewl _eieg) _ pn(ei(Gl—I—Gg))
— ein(01+92)

indq info

=€

= Pl )pu(e™)

- €
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SO pp, is a group homomorphism. Since py,(g) is an invertible linear transfor-
mation on C for all g € U(1), p,, is a representation of U(1) on C.

Exercise I1.16. Show that any complex 1-dimensional representation of U(1)
is equivalent to one of the representations p,,.

Solution II.16. Note that since p is a homomorphism, we require p(1) =
p(e) = 1. Any complex 1-dimensional representation of U(1) will be a rescaling

of 9,

pa(e)v = ey, aecR.

This is not of the form p, for a ¢ Z, but is equivalent by the bijection
. .0

pat e s el

Exercise I1.17. Show that the tensor product of the representations p, and

Pm is equivalent to the representation ppym.

Solution I1.17. By bilinearity,

/

(5 ® ) (€?)(0 @ V') = pu(e®)0 @ p(e Yo
— emev ® eimevl
_ eineeimﬁ(v ® UI)
_ ei(n+m)9(v Q U/)

= /’ner(ew)(U ® U,)a
SO pn @ pm is equivalent to ppym.

Exercise I1.18. Show that any 2 x 2 matrix may be uniquely expressed as a
linear combination of Pauli matrices o, ..., o3 with complex coefficients, and
that the matrix is hermitian if and only if these coefficients are real. Show that
the matrix is traceless if and only if the coefficient of oy vanishes.

Solution II.18. The Pauli matrices are

(10 (01 {0 =i (1 0
=19 1) 7 \10) 27\i o) 7 \o -1/

A linear combination of Pauli matrices with complex coefficients ¢, looks like

Co + C3 C1 — iCQ 211 k12
Z CUUH = . - )
c1tica cp—cC3 Z21 %222
which relates

211+ 222 212+ 2 _Z21 — 212 211 — 222
CO*Tv 017T’ 62*77 03*T-

If each z;; = 0, each ¢, = 0, so the Pauli matrices are linearly indepen-
dent. From above it is clear that they span M(2,C) but, more directly,
dim(M(2,C)) = 4 so linear independence implies they form a basis.
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A matrix is hermitian if it is its own conjugate transpose, so here we would

have
cp+c3 c1—ico\ [ty cf —ich
c1+ice co—cg )\t +ich -
which implies ¢, € R.
Taking the trace,
tr <Co + ?3 c1 — i62> — %,
c1+1cg cg—c3
so the matrix is traceless if and only if ¢g = 0.
Exercise 11.19. For ¢ = 1, 2, 3, show that
02-2 =1

and show that if (4, j, k) is a cyclic permutation of (1,2,3) then

0;0; = —0jo; =\ —1loy.

Solution I1.19. The result o = 1 follows from direct computation.

Taking cyclic products o;0;, we get

(o 1\ [o =i\ (i o\ .
7172711 o)\i o) " \o —i) ="

and, similarly, os03 = 01 and o301 = i09, SO

00 = 0k, 0j Ox0f 0; = 10 - 10j = —0;0;.

g0

Exercise I1.20. Show that the determinant of the 2 x 2 matrix a+bl +cJ+dK
is a® + b? + ¢® + d?. Show that if a,b,c,d are real and a® + > + 2 +d? =1,
this matrix is unitary. Conclude that SU(2) is the unit sphere in H.

Solution I1.20. We have quaternions
I =—ioq, J = —ios, K = —ios.
The matrix U = a + bI + ¢J + dK is

U = aoy — iboy — icoy — idog

_f[a O B 0 b B 0 c B id O
“\0 a i 0 - 0 0 —id
- a—1d —ib—c
“\—=ib4+c a+id)’
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S0
det(U) = a® + b* + ¢* + d°.

Imposing det(U) = 1, we get the inverse and conjugate transpose

1 [a+id ib+c t_ [a"+ad" bt 4 cf
U _<ib—c a,—z'd)’ Ul = ib* —c* a* —id*

so if a,b,c,d € R, U~ = U' is unitary. Since we required that det(U) = 1,
U € SU(2).

det(U) = 1 describes S3, so SU(2) is the unit 3-sphere in H since each point
as a quaternion lies on S3.

Exercise I1.21. Show that the spin-0 representation of SU(2) is equivalent
to the trivial representation in which every element of the group acts on C as
the identity.

Solution IL.21. Let H; be the space of homogeneous polynomials of degree
2j on C2. For a vector (z,y) € C2, H,; has the monomial basis {zPy?} with

p+q=2j.

For any g € SU(2), let U;(g) be the linear transformation of #; given by
Ui(9) f)v = fg~'v)

for all f € H;, v € C2

dim(#;) = 2j + 1, so the spin-0 representation is 1-dimensional. The basis for
Ho is {1}, so any f € Hp is of the form f(z,y) = fo where fy is constant.

(Uo(9) f)v = flg~v)
= fo
so Up(g)f = f, implying Up(g) is the identity for all g € SU(2).

Exercise I1.22. Show that the spin—% representation of SU(2) is equivalent

[to] the fundamental representation, in which every element g € SU(2) acts on
C? by matrix multiplication.

Solution I1.22. The basis for H1 is {z,y}, so
2

f@,y) = fiz+ foy = ( h)(i)

Denote f = (ﬁ), so f(z,y) = (f,v). Then, since g~! = gf,

(Us(9)f)v=(f.g"v)

=(gf,v).

N
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Exercise I1.23. Show that for any representation p of a group G on a vector
space V there is a dual or contragredient representation p* of G on V*, given
by

(0" (9).f)(v) = f(p(g™ )v)

for all v € V, f € V*. Show that all the representations U; of SU(2) are
equivalent to their duals.

Solution II.23. p* is a homomorphism since

(p*(id) f)v = f(p(id)v) = f(v),

i.e. p* preserves the identity, and

so p*(gh) = p*(g)p*(h) and p* is a representation of G on GL(V*).
For U; a representation of SU(2),
(U5 (9).f)(v) = f(Uj(g")v)
= f((Uj(g~")id)v)
= f(gv)

so representations of SU(2) are equivalent to their duals (isomorphic via the
adjoint).

Exercise II.24. Show that if S is a 2 X 2 matrix commuting with all 2 x 2
traceless hermitian matrices, S is a scalar multiple of the identity matrix. (One
approach is to suppose S commutes with the Pauli matrices o1, 09,03 and
derive equations its matrix entries must satisfy.)

Solution I1.24. Let

commute with the Pauli matrices.
S S11  S12 0 1 _ [S12 S11
g1 = - )
891 S92 10 522 821
g 0 1\(s11 s12\  [s21 522
015 = —
1 0/ \so1 s99 S11 812
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SO S11 = S92 and S12 = S21.
G — [ 511 S12 10\  [s11 —s12
73 = 0-1)" ’
512 S11 - S12 —S11
5 — 10\ (s11 si2) [ st s12
s 0 —1)\s12 s11 —s12 —s11 )’

80 s12 = —s12 = 0. This gives us

S = (811 0) :Sll-id.
0 sn

Exercise I1.25. Using the fact that GL(3,R) is a subgroup of GL(3,C), we
can think of p as a homomorphism from SU(2) to GL(3,C), or in other words,
a representation of SU(2) on C3. Show that this is equivalent to the spin-1
representation of SU(2).

Solution I1.25. With T = T"0;, we can identify the space of 2 x 2 hermitian
matrices with R® € C3. The homomorphism p : SU(2) — GL(3,C) is given by

p(g)T = gTg™"
and is a representation of SU(2) on C3.

In the spin-1 representation, we have polynomials of the form

fl@y) = fuz® + (fiz + fo1)zy + foor”

@ )(0)

=v*Tw.
Then
(Ui(9)f)v = flg~"v)
=(g7"0) ' T(g""v)
=v*¢Tg v
= (9f97")(v)
where gfg™' : v = v*gTg v, so Ui(9)f = gfg~' and therefore the spin-1

representation Uy of SU(2) is equivalent to the representation p above.

Exercise I1.26. Show that the cocycle automatically satisfies the cocycle

condition
610(g,h)629(gh,k) _ ezﬁ(g,hk)ew(h,k).
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Solution I1.26. For projective unitary representations,

p(g)p(h) = @M p(gh).
For g, h, k, ‘
p(g)p(h)p(k) = €M) p(gh)p(k)
—_ ei@(g,h)eie(gh,k‘)p(ghk)
and '
p(g9)p(h)p(k) = p(g)e "M p(hk)
— eie(g,hk)eie(h,k)p(ghk)

so equating gives e?(9:h) ¢i0(gh:k) — ¢i0(g:hk) gif(hk)

Exercise I1.27. Show this. (Hint: show that if the cocycle were inessential
we would have U;(—1) = 1, which is not true for j a half-integer.)

Solution I1.27. In general, we have p(gh) = (@) p(g)p(h).

We have the double cover p : SU(2) — SO(3). Let U; be the spin-j represen-
tation of SU(2). For each h € SO(3), pick g € SU(2) such that p(g) = h and
define the projective unitary representation of SO(3) as V;(h) = U;(g). Since
both g and —g cover h, the choice is arbitrary up to the sign.

But
Ui(g) = Uj(—g) (bosonic),
T ~Uj(—g)  (fermionic)
so, unlike the bosonic case, V; is not independent of the choice of g. Then
Vi(h') = U (£g9) = U (9)U;(g') = =V (Vi (H)
so Vj is a projective representation with cocycle £1.
If the cocycle is inessential, there exists h,h’ such that 6(h,h’) = 0. This
implies Vj(hh') = V;(h)V;(h') necessarily, but picking —g,
Vi(hh') = Uj(—gd')
= U;(-1)U;(9)U;(g")
= Uj(=)V;(h)V;()
so we require U;(—1) = 1, which is not true for fermions and therefore the

cocycle is essential.

Exercise I1.28. Suppose that z € R*. Show that x#x, as computed using
the Minkowski metric

2 2 2 2
IL'MleL = —l’o +£L'1 +ZL‘2 +$3

is equal to minus the determinant of the matrix 2*o, (which is to be understood
using the Einstein summation convention).
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Solution II.28. By direct calculation,

u (2% 0 L (0 x1+ O—ix2+x3 0
o= 10 20 b 0 ix? 0 0 —z°
_ 20+ a3l — 2
T\t 4ix? 20— a3
SO
—det(2t0,) = — (20 + 2°) (2" — 2°) + (2 —iz?) (2! +ix?)
= —(@"" + (@) + ()" + (%)
=atx,.

Exercise I1.29. Let M denote the space of 2 x 2 hermitian complex matrices,
a 4-dimensional real vector space with basis given by the Pauli matrices o,.
Let p be the representation of SL(2,C) on M by

p(g)T = gTg™".
Using the identification [of] M with Minkowski space given by
R* - M
x — atoy,,

show using the previous exercise that p preserves the Minkowski metric and
hence defines a homomorphism

p:SL(2,C) — O(3,1).

Solution I1.29. From exercise I1.18, any T" € M can be written as T' = T"0,,
with T# real. From exercise I1.28, we therefore have det(T') = —T*T),.

As
det(p(g)T) = det(gTg™") = det(T) = =T"T,,,

p preserves the Minkowski metric on M and therefore p : SL(2,C) — O(3,1)
is a homomorphism.

Exercise I1.30. Show that the range of p : SL(2,C) — O(3,1) lies in SO(3, 1).

Solution II1.30. Consider idy; = g¢. Then p : 09 — id € SOg(3,1). Since
SL(2, C) is connected and p is continuous, p must map every element of SL(2, C)
to the connected component of O(3,1),

p:SL(2,C) — SOy(3,1).
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Exercise I1.31. Show that p is two-to-one. In fact, p is also onto, so SL(2, C)
is a double cover of the connected Lorentz group SOg(3,1).

Solution II.31. Note that p is at least two-to-one, since
p(—=9)T = (=9)T(=9) " = gTg " = p(9)T
implies p(—g) = p(g). Suppose p(g) = p(h); then
p(gh™) = p(g)p(h) " =1

which requires that gh~! commutes with all matrices T € M, which, per
exercise 11.24, implies that gh™! is a scalar multiple of the identity. The only
scalar multiples of the identity in SOg(3,1) are +id, so h = £g and p is
two-to-one. Since p is also surjective, it is a double cover of SO¢(3,1).

Exercise I1.32. Investigate the finite-dimensional representations of SL(2,C)
and SO(3,1), copying the techniques used above for SU(2) and SO(3).

Solution I1.32. Since O(3,1) C GL(4,R), the homomorphism p from exer-
cise 11.29 is a representation of SL(2,C) on R*.

Similar to the SU(2) — SO(3) case where we construct a representation of
SO(3) using its double cover, for each h € SO(3,1), pick g € SL(2,C) with
p(g) = h and define the projective representation as Q;(h) = P;(g) where P;
is the spin-j representation of SL(2,C). Proceed analogously to get the spin-j
projective representations of SO(3,1).

I1.1.2 Lie Algebras

Exercise I1.33. For analysts: show that this sum converges.

Solution I1.33. The exponential of a square matrix 7' is

T2 713
exp(T)=14+T+ — + 5+

2! 3!
oo Tn

—-
n—0 n.

Since the space of square matrices is a vector space, we can take any submulti-
plicative matrix norm. As

1 _ 1Ty
~ )
n! n!
we get
Z“’ 1| < Z‘X’ 1T _ i
—  nl —  n!
n=0 n=0

so the series > ”:2—7” converges and therefore, by normal convergence, exp(7')
does too.
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Exercise I1.34. Show that the matrix describing a counterclockwise rotation
of angle ¢ about the unit vector n = (n*,n¥,n?) € R3 is given by

exp(t(n®Jy + n¥Jy + n*J)).

Solution I1.34. The matrices

00 O 0 01 0-1 0
J=10 0 -1(, J,= 00 0f, J,=(1 00
01 0 -1 0 0 0 00

form a basis for s0(3).

Denote
N =n"Jy +nJy, +n°J,

0 —n* n¥
= n® 0 —-n®
-n¥Y n* 0

The characteristic polynomial is

pN(A) = det(N — X -id)

=X -
and by the Cayley-Hamilton theorem, py(N) = 0 implies N> = —N, so
N* = —N? and so on. Therefore we only need to calculate
—(n¥)? = (n?)? n*nY n*n®
N% = n*n¥ —(n®)? — (n*)? nYn?
n*n? n¥n® —(n®)? — (n¥)?
(n®)? n*n¥ nFn? 1 00
= [n*n¥ (¥)* n¥n*| -0 1 0
n®n* n¥n® (n?)? 0 0 1
as (nl)2 =1- (nj)2 - (nk)2
Exponentiating,
. e s
exp(tN):1d+tN+§N +§N +EN +--
=id +tN r N? tSN v N?
=1d + + 5 - g - E + -

t3 2t 9
:1d+<t—3!+--->N+<2!—4!+~->N

=id + sin(t)N + (1 — cos(t)) N?

which reproduces the matrix form of Rodrigues’ rotation formula for a rotation
about n by an angle ¢.
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Exercise I1.35. Check this!
Solution I1.35. The claim is that if we consider the difference
exp(sJy) exp(tJy) — exp(tJy) exp(sJy)

and expand it as a power series in s and ¢, keeping only the lowest-order terms,
we obtain st(J,Jy — JyJ;) + higher order terms.

exp(sJz) exp(tJy) — exp(tJy) exp(sJy)
=({d+sdp+---)id+tJy+---)—(d+tJy + - )(id+ sy +--)
= (id + sJy + tJy + sty dy + -+ ) — (id + sJy + tJy + sty Jy + )
= st(Jpdy — JyJe) +--- .

Exercise I1.36. Show that
Jp=Jy=Jl=-1

and
o, Iyl = Ty [Ty, Il = Jo,  [Jzs o) = Jy.

Note the resemblance to vector cross products and quaternions, but also the
differences.

Solution I1.36. By direct calculation,

0O 0 O -1 0 0 -1 0 0
Jo=|0-1 0|, Jy=|[ 00 0] Ji=| 0-10
0 0 -1 0 0 -1 0O 0 O
so the first statement is false.
The commutators are
0 0O 010
[Jz,,]y]: 1 0 0|—10 O O J,
0 0O 0 0 0
0 00 0 0 0
[Jy,Jz]: 0 0 0]—=10 0 1] =d,,
010 0 0 0
0 0 1 0 0 0
[J.,J.]=10 0 O|—10 0 O = Jy.
0 0O 1 0 0

For R? with basis vectors {7, 7, /Z}, the cross product satisfies

— —
—

TXj:k, IXE:/Z; kxf:]’

so R3 with the cross product as Lie bracket forms the Lie algebra so(3).
More generally, since the Hodge star maps A2V — V for V an orientable
3-dimensional inner product space, we get that A2V is isomorphic to so(3).
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Exercise I1.37. Suppose T is any n X n complex matrix. Show that
exp((s + ¢)T) = exp(sT) exp(tT')

by a power series calculation. (Hint: use the binomial theorem.) Show that
for a fixed T', exp(t7T') is a smooth function from ¢ € R to the n x n matrices.
Show that exp(tT") is the identity when ¢ = 0 and that

d
7 exp(tT)‘tzo =T.

Solution I1.37. Expressing the exponential of (s + ¢)T as a power series,

(s+t)"T"
n!

(n) snkikn
: k n!

gn— ktan
< Kl(n — k)|
gn— an k tka

:ZZ (n—k)! kI

n=0 k=0

R

exp((s +1)T) =

n=0

M
WE

k

3
Il
=)

I
2 102
:nM:

—ZS ”'Zt”T”

= exp(st) exp(tT)

n!

by the Cauchy product formula.
For a fixed T, the function

=t

fr:t—exp(tT) = Z

n=0

n!
tT)*  (tT)?

=id+tT —
1—|——|—2+3!+

is smooth since it is polynomial in ¢.

From the above expansion, we get that %in% exp(tT') = id. Differentiating,
_>

d d & T
= exp(tT
at ") = Z

tn lTn
(n—1)!

n!




soatt=0,
d
7 exp(tT)‘tZO =T.

Exercise I1.38. Show that the Lie algebra gl(n,C) of GL(n,C) consists of
all n x n complex matrices. Show that the Lie algebra gl(n,R) of GL(n,R)
consists of all n x n real matrices.

Solution I1.38. Let «(¢) be a path in GL(n,C) with v(0) = id. We require
only that det(y(t)) # 0.

Let v(t) = exp(tT') so, from exercise 11.37, 7/(0) = T. By the next exercise,
our requirement is equivalent to ef(7) £ (. This holds for any n x n complex
matrix 7', so gl(n,C) = M (n,C).

The same argument holds when restricting the field to R, so gl(n, R) = M (n,R).

Exercise I1.39. Show that for any matrix 7',
det (exp(T)) = ™).

(Hint: first show it for diagonalizable matrices, then use the fact that these
are dense in the space of all matrices.) Use this to show that the Lie algebra
sl(n,C) of SL(n,C) consists of all n x n traceless complex matrices, while the
Lie algebra sl(n,R) of SL(n,R) consists of all n x n traceless real matrices.

Solution I1.39. Let T be diagonalizable and write T = SDS™! with D =
diag(A1, ..., An).

exp(T) = exp(SDS™1)
B i Spns—t
n=0

= Sexp(D)S™!

n!

det(exp(T)) = det(S eXp(D)S_l)
= det(exp(D))

= H e)‘i
=1
= exp (Z /\i>
i=1

_ etr(D)
— etr(T).

Since diagonalizable matrices are dense in the space of matrices, this holds for
all n x n matrices.
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Let v(t) be a path in SL(n, C) with v(0) = id. We require only that det(y(t)) =
1. Let y(t) = exp(tT) so, from exercise I1.37, 4/(0) = T. Then our condition
becomes e! ") =1 so tr(T") = 0 and sl(n,C) is all n x n traceless complex
matrices.

The same argument holds when restricting the field to R, so sl(n,R) is all
n X n traceless real matrices.

Exercise 11.40. Let g be a metric of signature (p,q) on R", where p 4+ ¢ = n.
Show that the Lie algebra so(p, q) of SO(p, q) consists of all real n x n matrices
T with

9(Tv,w) = —g(v, Tw)
for all v,w € R™. Show that the dimension of so(p, q), hence that of SO(p, q),

n(n—1)
2

is . Determine an explicit basis of the Lorentz Lie algebra, so0(3,1).

Solution I1.40. Let v(¢) be a path in SO(p, ¢) with v(0) = id. Then for any
v,w € R,
g(v()v,y()w) = g(v, w)
for all t. Letting 7/(0) = T and differentiating at ¢t = 0,
d

o™ @

= g (V)" 0P (1) jw” + A/ ()" juPy ()" ,w?)

= g (0P T" gw” + TH 0P w°)

= g (VT g + T poPw”)

=g(v,Tw) + g(Tv,w)

gy ()" 0Py (1) yw”)

L oty (1) .

t=0

so g(v, Tw)+g(Tv,w) = 0 and therefore so(p, q) is the set of real n x n matrices
T satisfying g(Tv,w) = —g(v,Tw). Thus, elements of so(p,q) are traceless
and either symmetric or skew-symmetric, satisfying 7),, = £7,,, where the
sign is negative if p, v < g (0-indexed), otherwise positive.

The dimension of this space is @ and, since the dimension of the tangent
space is equal to the dimension of the manifold, dim(SO(p,q)) = @ as

well.

As a result, we expect 50(3,1) to be a 6-dimensional vector space. A natural
basis will be three spatial rotations and three Lorentz boosts. The spatial
rotations can be constructed from the familiar basis of s0(3) as

Iz = y  Jy=

cocoo
cococo
_ o oo
o oo
cocoo
— o oo
cococo

N

I
cocoo
o~ oo

|
co~o
co oo
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For the Lorentz boosts as in solution II.1, let +;(¢) be a path in SO(3, 1) about
jk parameterised by rapidity. Denoting 7,(0) = K;,

cosh(¢) —sinh(¢) 0 0 0-1 0 0
| —sinh(¢) cosh(¢) 0 O -1 0 0 0
0 0 01 0 00O
cosh(¢) 0 —sinh(¢) 0 0 0-10
0 1 0 0 00 0O
WO _gimh(c) 0 cosh(c) 0|” Kv=|-1 0 0 o
0 0 0 1 00 0O
cosh(¢) 0 0 —sinh(() 0 0 0-1
0 10 0 0 00 O
:(6) = o o1 o | ® o000 o0
—sinh(¢) 0 0  cosh(() -1 0 0 0

We can combine these into the skew-symmetric matrix of Lorentz generators

0 K. K, K.
K, 0 J. —J,
~K, —J. 0 I,
K. J, —Jz O

M:

where in this form we notice that each entry M,g can be expressed in terms
of the Minkowski metric n as

(Maﬁ),w = NauMNsy — MuNav-

Exercise I1.41. Show that the Lie algebra u(n) of U(n) consists of all skew-
adjoint complex n X n matrices, that is, matrices T' with

Tij = —Tji.
In particular, show that u(1) consists of the purely imaginary complex numbers:
u(l) = {iz | z € R}.

Show that the Lie algebra su(n) of SU(n) consists of all traceless skew-adjoint
complex n X n matrices.

Solution I1.41. Let v(t) be a path in U(n) with v(0) = id. Then for any
(8o, v(w) = () ;077 (1) y* = o',

Let 4/(0) = T. Differentiating and setting ¢t = 0,

> B A
v'Tijw! + Ti07w" =0
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SO T%j = —sz'.
For z € u(1), our condition reduces to z = —z, so u(1) = {iz | z € R}.

For su(n), let v(t) be a path in SU(n) with (0) = id and let +/(0) = T.
We require det(y(¢)) = 1 which, by exercise 11.39, is equivalent to tr(7) = 0.
Therefore su(n) consists of all traceless skew-adjoint complex n x n matrices.

Exercise II.42. Show this for G a matrix Lie group by differentiating

with respect to t, using the product rule.
Solution II.42. Differentiating,
d

L (von0 )| _ =100+ Syn)]_ 0)7
d d
=207 _ 20|

SO
d d

0] =207

Exercise I1.43. If G is a matrix Lie group and 7, n are paths in G with
~v(0) = n(0) = 1, show that

d d d

—y(t)n(t = —( —n(t .

2| _ = 20|+ 2]

Conclude that the differential of - : G x G — G and (1,1) € G x G is the
addition map from g ® g to g.

Solution I1.43. By differentiating,

d

—@On(0) (0)n(0) +~(0)er'(0)

,_)//
7'(0) 4+ 7'(0)

o

as required. This implies that the derivative transforms the group operation
on G x G into addition on g & g.

Exercise I1.44. Check these. Note that in 2, the term ‘scalars’ means real
numbers if g is a real vector space, but complex numbers if g is a complex
vector space.

Solution I1.44. In the case of matrix Lie groups, where the Lie algebra g
consists of matrices and the Lie bracket is the commutator, it is easy to check
the following identities:

1. [v,w] = —[w,v] for all v,w € g,
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2. [u,av + pw] = afu,v] + Blu, w] for all u,v,w € g and scalars «, f3,
3. the Jacobi identity: [u, [v,w]] + [v, [w,u]] + [w, [u,v]] = 0.
See solution 1.24, which is identical.

Exercise I1.45. Show that the Lie algebras su(2) and so(3) are isomorphic
as follows. First show that su(2) has as a basis the quaternions I, J, K or, in
other words, the matrices —ioq, —to2, —io3. Then show that the linear map
f :su(2) — so(3) given by

1

is a Lie algebra homomorphism.

Solution II.45. From exercise 11.20, SU(2) is isomorphic to S® and therefore
its tangent space is 3-dimensional. From exercise I1.41, su(2) consists of all
traceless skew-adjoint complex 2 x 2 matrices. From exercise I1.18, the Pauli
matrices are linearly independent and tr(c;o;) = 0 for any ¢; € C.

Since the quaternions I, J, K in matrix form are three linearly independent
traceless skew-adjoint complex 2 x 2 matrices, they form a basis of su(2).

A Lie algebra isomorphism is a bijective linear map f : g — b preserving the
Lie bracket, i.e. mapping [v, w] — [f(v), f(w)]. Recall from exercise 11.19 that
[04, 0] = 2i€;j01 and from exercise 11.36 that [J;, J;] = €, Jx and consider
the obviously bijective map f : —%o; + J; from su(2) to s0(3).

f([=30i,—30i]) = f(=3loi. o))

= f(—%e€inon)

= €k Jk

= [/, Jj]

= [f(=303), F(=305)];
so su(2) and so(3) are isomorphic.
Exercise I1.46. Let M be any manifold and v,w € Vect(M). Let ¢ be a
diffeomorphism of M. Show that

Pulv, w] = [dsv, duw].

Conclude that if v, w are two left-invariant vector fields on a Lie group, so is
[v, w].

Solution I1.46. Recall from solution 1.18 the pushforward of a vector at a
point,

G« (vp) (f) = (¢xv)(f) ((p))-
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Applying ¢.[v, w] to some f € C*°(M) at p € M,

Gxlv, w], f = [vvw]p( ¢ f)

(
= v((¢- )( )(¢
= v(w(¢"f)(¢

= v(w(e"f)(o(p
=v(w(¢*f) o 9)(p) —w(v(@*f
= ¢*v( (cb ) (p) — psw(v(e”

[mv duw ]pf

If v, w are left-invariant then ¢.[v, w] = [d.v, P w]| = [v,w], so [v, w] is also
left-invariant.

Exercise I1.47. Let G be a matrix Lie group. Let v be a left-invariant vector
field on G and vy € g its value at the identity. Let ¢; : G — G be given by

¢t(g) = gexp(tvr).

Show that ¢; is the flow generated by v, that is, that

for all g € G.

Solution I1.47. Recall from exercise 1.12 that for a manifold M, f € C*°(M)
and a path v: R — M,

d
) £ L1,
Denoting v(t) = exp(tviq), we have
v(0) = id, 7' (0) = vig.
Differentiating,
d
500 = lelentn)|

=7'(0)(Ly)
= via(Lg)
= (LQ)*vid

:Ug

which, from §1.3.3, implies that ¢; is the flow generated by v.
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Exercise I1.48. Let G be a matrix Lie group and g its Lie algebra. Let uq, v1
and w; = [u1,v1] be elements of g and let u, v and w be the corresponding
left-invariant vector fields on G. Show that [u,v] = w, so that g and the
left-invariant vector fields on G are isomorphic as Lie algebras. (Hint: use the
previous exercise and, if necessary, review the material on flows in Chapter 3
of Part I.)

Solution II1.48. Let

Yu, (t) = exp(tuy), Yoy (8) = exp(svy),
be paths in G. Let ¢y, 15 be flows generated by u and v, respectively, i.e.

(bt(g) = 9% (t)7 %(9) = 9% <3>
We have that

[ug, v1] = 88875 (Vs () 701 (8) = Yo ()7 (£) ‘S:t:O.

Recall from exercise 1.23 the Lie bracket of vector fields in terms of their flows.
2

0], = o (6a(61(0)) — 15(9))

82 s=t=0
8 ot (ws(g')/ul( )) - ¢t(97@1 (S))) ‘s=t=0
2
= % (g'Vul (t)7v1 (5) — 9% (8)’7“1 (t)) s=t=0

giving [u1,v1] = [u, v];.

Pushing forward wy by L,

= [u,v]
and since (Ly), w1 = wy, we get w = [u, v].
Exercise II1.49. Show that this is a Lie algebra homomorphism.

Solution 11.49. The claim is that every homomorphism p : G — H between
Lie groups determines a corresponding homomorphism dp : g — § between
their Lie algebras given by

dp = (p), : WG — T1H.
By exercise 11.46, for v,w € g,
dp([v,w]) = p«([v, w])
= [psv, puw]
= [dp(v), dp(w)]
so dp is a Lie algebra homomorphism.
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Exercise I1.50. Do these calculations.

Solution I1.50. Consider the two-to-one homomorphism p : SU(2) — SO(3)
from §II.1.1, which determines the homomorphism dp : su(2) — so0(3).

Our conventional basis for su(2) is {—%0;}, so the path in SU(2) corresponding
toj=3is

p(g¢) is determined by its action on each

p(g)oj = giojg;

For oy,
plgr)or = giorg;
ez 0\ [0 1\fez 0O
Lo e3)\1 0)\o e %
0 e—it
“ et 0
= cos(t)oy + sin(t)og,
for o9,
p(gt)os = gioag; '
B <e—’5 0 )(0 —i) (ag 0 )
- it . it
0 ez ¢t 0 0 e 2
(0 —ieTT\[ex 0
ie% 0 0 e*%
(0 —je
e 0
= —sin(t)o; + cos(t)o
and for o3,

p(g1)os = giosg; "

ez 0\ (1 0\(er o
B 0 e% 0 -1 0 e_%
_ e % 0 e 0
"l o —e? 0 e 2
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Note that if we instead used {£o;} as our basis for su(2), our result would have
the sign flipped on each sine function, corresponding to a positive rotation
about the z-axis by t.

Exercise II.51. Show that p(exp(—%01)) is a rotation of angle t about the
z-axis and p(exp(—3502)) is a rotation of angle ¢ about the y-axis.

Solution I1.51. The path in SU(2) corresponding to j =1 is

gt = eXp(—ital)

B Z ’tal

2! Al
BENETNETIE
- (d—(;)z—i-(;)[l-i- )
+i01-<—+(;)3—(_5!§)5+~->

= cos(%)og — isin(})oy

p(ge) is determined by its action on each p(g¢)o; = gtajgt_l

For o1,

p(gt)o1 = giorg;

_ ( cos(%) —z'sm(é)) (0 1) <cos(§) isin(é))
—isin(%)  cos(%) 1 0)\isin(%) cos()
_ (—iSl n(%)  cos(%) > (cos(é) isin(é))
cos(L) —isin(%) ) \isin(}) cos(%)

= 0'17
for o9,

p(g1)o2 = gro2g; "

_ < cos(%) —isin 3)) <O —z) (COS(
—isin(%) cos(%) i 0) \isin(

DO+

) z’sm(;))

) COS(%)

N[+

N
w0
—
B
—~
ol
N—
[
-~
Q
o
n
—~
N[+
S~—
SN—
N
e}
o
)]
—~
N|
N—r
-~
w0
—
B
—
N[+
N—
SN—

~
w0
=
=
—~
N[+
N~—
@)
O
wn
—~
N[+
~—



_ ( sin(t) —1 cos(t))
icos(t) —sin(t)
= cos(t)oz + sin(t)o3

and for o3,

p(gt)os = giosg;

isin(%) ) (cos(g) isin

t

2
—2i cos(%) sin(%) sin(%)2 — cos(%)
t

_ < cos(t) isin( ))
—isin(t) —cos(t)

s(
= —sin(t)og + cos(t)os.

_ (cos(§)2 —sim(%)2 2i cos(%) sin(%)

Flipping the sign of ¢ to be consistent with our convention of rotating in a
positive direction, in the space spanned by {o;} we get

1 0 0

p(ge) = [0 cos(t) —sin(t)
0 sin(t)  cos(t)

which describes a (positive) rotation about the x-axis by t.

The path in SU(2) corresponding to j = 2 is

gt = eXP(—%tU2)

= cos(%)og — i sin(

B (C(.)S( ) —sin(

)2

By similar calculations and after flipping ¢, we get
cos(t) 0 sin(t)
p(gt) = o 1 0
—sin(t) 0 cos(t)

which describes a (positive) rotation about the y-axis by t.
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Exercise I1.52. Show that in the spin—% representation of SU(2), the expected
value of the angular momentum about the z-axis in the so-called spin-up state,

is %, while in the spin-down state,

it is —%. Similarly, compute the expected value of the angular momentum
about the z- and y-axesS in these states.

Solution II.52. The expected value of the z-component of the system’s
angular momentum about that axis is given by

(¥, dU (%))

where dU is a representation of su(2). Recall from exercise 11.22 that the spin—%
representation of SU(2) is equivalent to the fundamental representation.

For the spin-up state,

(1.0 (%)) =

and for the spin-down state,

caen=((1). (3 -9)(2))
: <§?> &)

5We consider the z- and y-axes since we are already asked to compute the expected value
about the z-axis.
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For the z-axis,

O =

N—— ~—— N——— ~~——

(1, dU(%)1)

S =
o= O NIR O

&

(4 dU ()4

N
= O

Il
— O
=INTERN
[=INT

7N N /N N
N N /N 7 N
~__—
\/

and for the y-axis,

(hdU () =

Exercise I1.53. Show that sl(n,R), sl(n,C), so(p, ¢) and su(n) are semisimple,
except for certain low-dimensional cases, which you should determine.

Solution I1.53. We say that g is a semisimple Lie algebra if every element of
g is a linear combination of the Lie bracket of other elements.

Consider first sl(n, C), which we know from exercise 11.39 has a representation
as all n x n traceless complex matrices.

o Let z €sl(1,C). Then tr(z) =0, so z = 0 and sl(1,C) = {0} is semisimple.

e When n = 2, we can use the basis

S I (X R ()

of s((2,C) satisfying
[h,e]:2€, [haf]:_2f7 [evf]:hv
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implying every element of sl(2,C) is a linear combination of the Lie bracket
of other elements and therefore sl(2, C) is semisimple.

o Let E;; be the matrix with 1 at the ¢, j position and zero elsewhere. Notice
that Ei B = 5klEij, SO
[Eik, Eij] = ok Eij — 0ij B,
implying every element of sl(n,C) is a linear combination of the Lie bracket
of other elements and therefore sl(n,C) is semisimple.

The same argument holds when restricting the field to R, so sl(n,R) is also
semisimple.

From exercise 11.40, a representation of so(p,q) consists of all real traceless
n x n matrices T' satisfying T}, = £T),,, where the sign is negative if u,v < ¢
(0-indexed), otherwise positive.

Recall the matrix of Lorentz generators M from solution I1.40 and generalise
it to use a metric g on R™ of signature (p, q), so

(Maﬁ),w = Yap98v — 98u9av

or, contracting, (Mqg)" = 0kgs, — 6§ga,,. Notice that

(Maﬂ)up(Mwé)py = (5ggﬂp - 559@))(‘%9& - 55971/)
= 0498008 95 — 0K 93005 9yu
- 5Zgap&;g6u + 5ggap5§g'yu
= 98,05 950 — 985059
— 9o 03950 + 9as0s G

SO

[Mag, Mysl", = (Map)”,(Mys)", = (Mys)" (Mag)",

= 98,0895 — 9850hGyw — Jar 03950 + GO Gy
— 95005981 + 95804 Gow + 9va 05 9pr — 9605 Gou

= 9 (08960 — 05 gow) — 95(Oh gy — 04 Gar)
— 9o (05960 — 05 951) + 9as(959+ — 05 gp0)

= 987(Mas)", — 985(Mar)"), = gary (Ms)", + gas(Mpy)",,,

giving
[Mog, Mys) = gayMas — 985 Moy — GaryMps + gas Mg,

This implies that every element of so(p,q), n > 2, is a linear combination of
the Lie bracket of other elements and therefore so(p, q), n > 2 is semisimple.
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From exercise I1.41, a representation of su(n) consists of all traceless skew-
adjoint complex n x n matrices. As with sl(1,C), su(1) is zero-dimensional
and trivially semisimple. For n > 2, consider generators T; similar to the Fj;s
of 5[(2,C) which are skew-adjoint and traceless. There are n? — 1 such linearly
independent entities and therefore they form a basis of su(n). As before, we
can construct [Ty, Tp] = fapeTe for fape structure constants. Trusting that these
constants are non-zero, every element of su(n) is a linear combination of the
Lie bracket of other elements and therefore su(n) is semisimple.

Exercise I1.54. Show that if g and § are Lie algebras, so is the direct sum
g P b, with bracket given by

[(z,2"), (y,9)] = ([z, 9], [ ¢]).

Show that if G and H are Lie groups with Lie algebras g and b, the Lie algebra
of G x H is isomorphic to g @& h. Show that if g and b are semisimple, so is

godh.

Solution I1.54. To show that g @ b is a Lie algebra, we must check identities
1, 2 and 3 from solution I1.44.

1. For anticommutativity,

[(,2), (v, ¢)] = ( ,x/, )

—[v,2"])
,( )]

I

/\
\-—n.—
~— >

[(

2. For linearity,

[(z,27), ey, ') + B(2,2)] = [(2,2), (ay + B2, a9 + B2')]
(may+ﬁ2 (2, oy + B2])
= (afz,y ]+,B[ar 2] a2’y + Bla’, 2'])

(
[

[
[z, ] y']) + B([z, 2], [+, 2])
(z,2"), (y.4)] + Bl(z,2), (2,2")].

«
«

3. For the Jacobi identity,

[(ZE7 wl)a [(y7 y,)a (Zv z/)]] = [(ZL‘, lj)? ([ya Z]’ [y,a Z,])]

and similarly,
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SO

[(z,27), [(y,9), (2, 2)]]

+ [, 9);[(2,2), (z,2)]
+ [(2,2), [z, 2"), (v, )] = ([, [y, 2], [2 [y, 2]
+ ([, [z, 2]], [y [£4 2]])
+ ([Za [z, yH: [Zla [56,7 y/]])
= ([z, [y, 2]] + [y, [z, 2]] + [2, [=,9]],
[, [, 2']] + [¢) [ 2] + [ 2 1))

Consider the linear map
frg0h—=TaGx H
D (z, 7)) =z

which preserves the Lie bracket above as

(2, (v, 9)]) = f([z,9], [ y])
= [z,y] ® [\ y/]
[@wy@y]

(), f )],

Since f is bijective, the Lie algebra of G x H is isomorphic to g & b.

If g, h are semisimple then any element of g, h can be written as a linear
combination of the Lie bracket of other elements. By linearity, we need only
consider z = [y, z] € g and 2/ = [¢/, 2] € h. Then

(z,2) = ([yv 2, [y, 7)) = [(3/7 y), (2, z/)}

so g @ b is also semisimple.
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